
MASTER THESIS

Content-based Music Recommendation

Author:

Benjamin POHL

Supervisor:

Dr. George FAZEKAS

A thesis submitted in fulfillment of the requirements

for the degree of MSc. Big Data Science

in the

Centre for Digital Music

School of Electronic Engineering and Computer Science

http://
http://eecs.qmul.ac.uk/~gyorgyf/about.html
http://c4dm.eecs.qmul.ac.uk/
http://www.eecs.qmul.ac.uk/

i

QUEEN MARY UNIVERSITY OF LONDON

Abstract

School of Electronic Engineering and Computer Science

MSc. Big Data Science

Content-based Music Recommendation

by Benjamin POHL

Recent boom in the industry of digital music distribution has made recommendation

systems more of a necessity than a convenience both for consumers as well as business.

Recommendations hitherto are mostly provided using collaborative filtering methods.

This, however, fails to provide appropriate recommendations if no or sparse feedback

data is obtainable which is known as the cold start problem. This research project aims

to evaluate whether different machine learning techniques like CNN, RNN, Triplet-

Network and transfer learning can overcome the cold start problem through content-

based recommendations by predicting latent factors obtained by using a collaborative-

based model. Quantitative and qualitative evaluation showed that machine learning

based models are able to provide relevant recommendations and outperform tradi-

tional approaches and that musical-embeddings play a crucial role in doing so. Find-

ings from this work can be used to provide better recommendations, perhaps leading

to more business turnover and higher customer satisfaction.

HTTPS://WWW.QMUL.AC.UK/
http://www.eecs.qmul.ac.uk/

ii

Acknowledgements
I would like to thank Dr. George Fazekas from Queen Mary University and Dr. Elio

Quinton from Universal Music Group (UMG) for their valuable and constructive sug-

gestions during the planning and development of this research work.

iii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1

1.1 Context and structure . 1

1.2 Personal motivation . 3

2 Related Work 4

2.1 Introduction . 4

2.2 Audio feature extraction . 4

2.3 Music recommendation . 5

3 Background 7

3.1 Introduction . 7

3.2 Recommendation methods . 7

3.2.1 Collaborative filtering . 8

Memory-based Collaborative filtering 9

Model-based Collaborative filtering 11

3.2.2 Content-based filtering . 13

3.2.3 Hybrid approaches . 15

3.3 Audio features . 16

3.3.1 Spectrograms . 17

3.3.2 Mel Frequency Cepstral Coefficient 19

iv

3.4 Machine Learning Methods . 20

3.4.1 Bag of Tones . 20

3.4.2 Convolutional Neural Networks 21

3.4.3 Recurrent Neural Networks . 22

4 Dataset and Hardware Setup 24

4.1 Dataset . 24

4.2 Preprocessing . 25

4.3 Hardware requirements and its difficulties 26

5 Methodology 29

5.1 Bag of Tones model . 29

5.2 Convolutional Neural Networks . 30

5.2.1 Basic Convnet . 31

5.2.2 Convnet architecture adjustments 33

5.3 Recurrent Neural Network . 36

5.4 Pre-trained Neural Networks . 37

5.5 Triplet Neural Network . 38

5.6 Evaluations . 40

5.6.1 Quantitative evaluation . 40

5.6.2 Qualitative evaluation . 41

6 Experiments and Results 43

6.1 Bag of Tones . 43

6.2 Convolutional Neural Network . 44

6.3 Recurrent Neural Network . 46

6.4 Pre-trained Neural Networks . 47

6.5 Triplet Network . 50

6.6 Evaluations . 51

6.6.1 Quantitative evaluation . 51

v

6.6.2 Qualitative evaluation . 51

7 Conclusions and future work 54

A CNN visualisation of filter weights 57

B Spotify recommendations 58

vi

List of Figures

3.1 Nearest-neighbour . 9

3.2 Item-similarity . 10

3.3 Semantic Gap . 14

3.4 Audio transformation from waveform to spectrogram with 30sec sample

taken from the song awol - drs everyman Hip-Hop genre 17

3.5 Comparison of short and long window Fourier transformation 18

3.6 Illustration of VGG16 low-, mid- and high-level feature extraction 21

3.7 LSTM cell . 23

4.1 Output distribution . 26

4.3 Latent factors preprocessing . 27

5.2 Compare original Input and output activation’s after first convolutional

operation . 34

6.1 Train history . 44

A.1 Visualisation of filter weights . 57

B.1 Playlist recommendation for Swan Lake by Tchaikovsky 59

B.1 Playlist recommendation for Swan Lake by Tchaikovsky 60

B.2 Playlist recommendation for Klavier by Rammstein 60

B.2 Playlist recommendation for Klavier by Rammstein 61

vii

List of Tables

6.1 Results table for Bag of Tones model . 44

6.2 Results table for all CNN models . 46

6.3 Results table for all RNN models . 47

6.4 Results table for all pre-trained models . 49

6.5 Results table for triplet model . 51

6.6 Results table for quantitative evaluations based on similarity 52

6.7 Results table for quantitative evaluations based on dot product 52

viii

List of Abbreviations

BoT Bag of Tones 20, 29
BoW Bag of Words 20

CE Compute Engine 26
CF Collaborative Filtering 7, 13,

15, 24
CNN Convolutional Neural Network vii, 21,

22, 37,
38, 44,
46, 49,
50, 53

dB Decibel 25
DBN Deep Belief Networks 5
DCT Discrete Cosine Transform 19

ELU Exponential Linear Unit 32

GCP Google Cloud Platform 26, 28
GMM Gaussian Mixture Models 5

HAS Human Auditory System 19
HMM Hidden Markov Models 5

LSTM Long Short-Term Memory 22, 36,
37, 46

MAU Monthly Active User 11
MF Matrix Factorization 12
MFCC Mel Frequency Cepstral Coefficient 5, 19,

21, 29,
43

MIR Music Information Retrieval 2, 4, 5,
14

ML Machine Learning 5, 6, 20,
21

PCA Principal Component Analysis 12

ix

RD Research and Development 8
ReLU Rectified Linear Unit 32
RNN Recurrent Neural Network vii, 22,

36, 46,
47, 49

SGD Stochastic Gradient Descent 12, 13
SLA Service Level Agreement 28
STFT Short Time Fourier Transform 18
SVD Single Value Decomposition 12
SVM Support Vector Machines 5, 6

UMG Universal Music Group 3, 24–
26, 28,
30, 58

VM Virtual Machine 26, 28

1

Chapter 1

Introduction

1.1 Context and structure

Recommendation systems shape our everyday life. They are responsible for creating

your personal YouTube-feed to watch while eating breakfast. They show you your top

news-stories on your way to work, give you the best places to eat for lunch, help you

find the perfect birthday present for a friend, prepare a relaxing evening with your top

Netflix shows and, not to be forgotten, recommend the perfect music while performing

all these activities [33], [49], [53], [64], [71].

Since the world wide web took off in the 1990s the amount of information accessible

by the average person has exploded and recommendation systems have become more

of a necessity than a convenience. A search for ’sweet cat’s’ yields about 71 million

search results on YouTube. Without a recommendation system who knows which of

these videos would appeal to me, I would need to spend more than my entire lifetime

to find it. The same is true for music with top tier streaming services like Spotify or

Apple Music reaching a music library of over 50 million songs [116].

Current state of the art recommendations are done using the user’s historic preferences

[79]. This is based on the assumption that users who agree in the past (i.e. listening

to the same songs/artists) will, most likely, also agree in the future. This is known as

Chapter 1. Introduction 2

the collaborative-based approach for recommendations. However, the drawback of this

approach is, that music with no previous history (i.e. new music) or music in a niche

genre is unlikely to be recommended because of scarce data. As most users listening

preferences follow the power law, this is true for a large part of the musical archive [53].

With Spotify’s founder Daniel Ek publicly stating the number of new tracks added to

Spotify each year has grown from 20.000 songs per day [120] in 2018 to nearly 40.000

songs a day in 2019 [123], this cold start problem needs to be addressed.

For that reason, the Music Information Retrieval (MIR) research community has put

a lot of effort into content-based recommendation systems. This involved mainly the

development of features extraction methods and functions that define similarities. Ap-

proaches for similarity measurements between audio signals often rely on ad-hoc de-

fined metrics that are based on prior information, hence, they might not be suitable for

recommendation [55], [77]. To bridge the semantic gap between one’s preferences to-

wards a song and the corresponding signal, researches have taken latent factors models

[49] and applied them to the musical domain with good initial results [85].

The main research objective of this thesis is to evaluate if the cold start problem can

be overcome via content-based music recommendations incorporating latent factors

models using machine learning techniques like artificial neural networks.

My contributions include:

• Identified the problem and stated relevant background as well as related papers

• Conducted several experiments with conventional artificial neural networks like

CNN and RNN.

• Explain, develop and implement a novel machine learning technique for embed-

ding creation e.g. Triplet-Network for content-based recommendations

• Evaluate the achieved recommendations using qualitative and quantitative anal-

ysis

Chapter 1. Introduction 3

• Present potential improvements as future work

This project was done in partnership with Universal Music Group (UMG) who pro-

vided all the data and computational resources as well as valuable and constructive

suggestions during planning and development.

Chapter 2 will give an overview of the related work. Chapter 3 gives an overview of

music recommendation and its challenges, the key audio features description, latent

factor models and the used machine learning techniques. Chapter 4 will display the

dataset, pre-processing steps and hardware environment. Chapter 5 will lay out the

used methodologies. Chapter 6 will present the conducted experiments and result.

Chapter 7 will close with the conclusion and future work.

1.2 Personal motivation

Music listening is an essential part of my life. For the most part, I am using music as

a brain manipulation tool e.g. to focus or to relax and I am always actively searching

for more music to enjoy. This, however, is not an easy task as current music recom-

mendation systems still have a lot of room for improvement to satisfy my need for the

discovery of new music. Therefore, I decided to pursue my master’s project in the area

of content-based music recommendation in cooperation with Universal Music Group

with the hope to discover new techniques to improve current recommendation systems.

4

Chapter 2

Related Work

2.1 Introduction

The MIR research community is comprised of experts in the field of signal processing,

musicology, information retrieval, physiology, machine learning, optical music recogni-

tion and more. Some of the core applications are music generation, playlist generation

or continuation and music recommendation.

This chapter will give an overview of related work which will include different meth-

ods used to solve the same or similar problems like the one at hand. The first part will

be an overview of research conducted into audio feature extraction and the second part

over similarity metrics and recommendations.

2.2 Audio feature extraction

Early research into feature extraction yielded only very basic features like spectral cen-

troids or more advanced ones like pitch or harmonicity. These features were then used

in a basic classification task using distance metrics such as euclidean-distance or cosine-

distance [18]. These basic features were replaced by more engineered ones like the

Chapter 2. Related Work 5

Spectrogram in its different variations (i.e. powered, mel-scaled or with cepstral coef-

ficients). These were then used to build a Bag of Tones model (using the bag of words

approach), and classified by histogram intersection [20]. However, these classifications

had a limited amount of basic classes such as ’music’, ’no music, ’chatting’, ’noise’ etc

[19]. [24] was one of the first researches to build a system that would provide similarity-

based recommendations to a given song using the above-mentioned features.

The rise in popularity of Machine Learning (ML) techniques also influenced the field

of MIR. In the beginning of the 2000s established statistical and ML techniques like

Gaussian Mixture Models (GMM) in combination with K-means clustering [27], [29],

Monte Carlo simulations, Hidden Markov Models (HMM) [39] and Support Vector

Machines (SVM) [35], [43] in combination with the before mentioned Mel Frequency

Cepstral Coefficient (MFCC) features were used. Research was also conducted if these

new methods could be used with simpler features such as timbre or tonal ones [37]

or if a combination of them would yield better predictions [47], [51]. The rise of neu-

ral networks or earlier architectures like Deep Belief Networks (DBN) has also made it

possible to investigate if features can be learned instead of predefined [66], [73], [78].

2.3 Music recommendation

Another part of the research community focused on improvements to similarity met-

rics, which can serve as an important feature for recommendations, by learning them

[55] or incorporating algorithm used in recommendation systems such as learning to

rank [82]. Another option would be to incorporate latent vectors [85] which are based

data retrieved from collaborative filtering. These content-based extensions are based

on the assumption that collaborative recommendations outperform content-based ones

[53], [79]. Pure content-based recommendations have not seen much attention as pre-

liminary results did not show good results [38], [40], [43].

Chapter 2. Related Work 6

On the other hand, pure collaborative-based ones, have been a major topic for the MIR

community, which might be due to the fact collaborative-based recommendations have

been extensively researched in other domains such as movies [49] or E-commerce with

good initial results [23] and can relatively easily be adapted towards music recommen-

dation. This lead to improvements and interesting discoveries such as the elimination

or dampening of the grey sheep problem which is, because of the sparse listening pref-

erences of users, quite common in the musical domain [107].

There has also been research into hybrid recommendations i.e. the combination of

both content-based and collaborative-based techniques. Early hybrid recommenda-

tions combined these two approaches through different ML techniques such as SVM

[41], [45] or Bayesian network [48]. More advanced techniques were used by [82], [85].

Other researches incorporated more user-oriented contextual information such as self-

created playlist [50] or social media information [56], [63]. These user-centric recom-

mendations have been recognized as more promising as they cover a broader range of

attributes such as coverage [65] or novelty [53] which seems to be more important than

simple quantitative measurement such as accuracy. This has sparked many different

research directions such as ones based on users’ explicit or implicit feedback [32] or se-

mantic description [84]. Another area of interest is the modeling of perceived similarity

[46], [59]. Direct improvements towards producing more novel recommendations have

been made by [68] and more recently by [101] which try to incorporate the popularity

of songs.

7

Chapter 3

Background

3.1 Introduction

This chapter will give an overview of different recommendation methods and their use

cases. It will also include an explanation of the variety of features that can be extracted

from audio signals, how they are constructed and their use for the problem of content-

based recommendation. The last part will outline machine learning techniques.

3.2 Recommendation methods

In the world of recommendation systems, there are 4 major groups of how a recom-

mendation can be provided. These are Collaborative Filtering (CF), also referred to

as collaborative-based filtering throughout this thesis, context-based filtering, content-

based filtering and hybrid methods that combine a mix of the above-mentioned ones.

As this thesis focuses on content-based recommendation using collaborative-based la-

tent vectors, context-based filtering will not be explored in depth.

Chapter 3. Background 8

3.2.1 Collaborative filtering

This method uses data from a large user base (collaborating) which includes their pref-

erences/tastes and is able to make intelligent recommendations (filtering/predictions)

for a given user. Recommendations are made with the underlying assumption that,

for given user X, finding a user Y with similar preferences, the probability of agree-

ment between X and Y for a give statement S is higher than between X and a randomly

chosen person [76] which is derived from the psychological analysis of humans that a

recommendation from a person similar to us, will yield better ones than from foreigners

[14].

The method was invented by the Research and Development (RD) team at PARC (for-

mally know as XEROX PARC) [15] and has since become the most widely used recom-

mendation systems for all aspects of life. It has also been demonstrated that collaborative-

based consistently outperform alternatives [72]. The same is true for music recommen-

dation as shown by [79]

The captured data, on which the filtering is performed, should include the user’s taste

towards the area of recommendation. Therefore, feedback data is mostly used. This

can be in the form of explicit feedback which is mostly categorical (e.g. 0 to 5 stars)

or binary (e.g. thumb up / down) or implicit feedback which is inferred from a user’s

usage-pattern (e.g. play-counts, watch-/listen-time, ...) [16]. Early CF adaptations into

the music domain relied mostly on explicit feedback [53], [67]. This was due to the

findings that explicit feedback is more accurate as it incorporates positive and negative

treats and hence can provide better recommendations. Even though it might be more

accurate, explicit feedback is very sparse, meaning, the amount of explicit feedback

per user is very low. Research has shown that a large amount of implicit feedback

can outperform small amounts of explicit feedback based CF recommendations [67].

Therefore, the use of implicit feedback through user tracking has become the norm.

As explained above, the main Idea of CF is to create a matrix M that captures users’

Chapter 3. Background 9

FIGURE 3.1: Nearest-neighbour user-based CF

preferences. The matrix M is build by a list of m users U = u1, u2, ..., um and n items I =

i1, i2, ..., in. This means each user ui has its preferences captured in a list of items Iui. For

each active user uα ∈ U , there are to main actions that can be performed: predictions

and recommendations. Predictions are numerical probabilities, denoted as Pu,i, which

represent the predicted overlap for a given item ij /∈ Iua . Recommendations are a list of

N items Ir containing the highest N-made predictions from a list of items Ir ∩ Iuα = Φ

i.e. a list containing only items the active user uα has not expressed preferences for

[28]. There are a variety of algorithms that can perform these two actions which can be

divided into two groups: memory-based and model-based approaches.

Memory-based Collaborative filtering

Memory-based approaches, also referred to as user-based or item-based, make use of

the entire matrix M to generated predictions or make recommendations by finding sim-

ilar users or items or user-item combinations. One of the simplest but also most used

techniques, at least in the early 2000s, is to find similar users, that is, users whose pref-

erences overlap, is the nearest− neighbour technique. See figure 3.1 for illustration. We

can make a prediction pu,i for our active user uα with

pu,i =
∑k similarity-function

(
si, sj

)
Ru,j

number of ratings

Chapter 3. Background 10

FIGURE 3.2: Item similarity, item-based CF

with k ≤ U − 1. pu,i denotes the prediction for user u and item i and Ru,j the provided

rating for item j. Number of ratings can also be expressed as ∑k similarity-function (|si, j|).

To adjust for ones user individual ratings one can also use an adjusted average

pu,i =
∑k similarity-function

(
si, sj

)
(Ru,j − Rj)

number of ratings

One can use a variety of functions to calculate similarities. One of the most widespread

ones are Pearson correlation or cosine similarity [28]. The Pearson correlation is defined

as:

sim(i, j) =
∑u∈U

(
Ru,i − Ri

) (
Ru,j − Rj

)√
∑u∈U

(
Ru,i − Ri

)2
√

∑u∈U
(

Ru,j − Rj
)2

[12]. The cosine similarity is defined as:

sim(i, j) = cos(~i,~j) =
~i ·~j
‖~i‖ ∗ ‖~j‖

=
∑k Ri,kRj,k√

∑k R2
i,k

√
∑k R2

j,k

[5].

These similarity-based measurements are also used in the item-based filtering where

one does not want to find similar users, but similar items. See figure 3.2 for an illus-

tration. This method can be used if only a small number of similar users can be found

and hence the user-based recommendation might be quite poor. One can create an

Chapter 3. Background 11

item-based similarity matrix M by the above-mentioned similarity metrics and take the

(weighted) average number of ratings of the active user uα on M to make item-based

recommendations.

Both user-based and item-based filtering were successful in the past by providing de-

cent recommendations, but they both face some challenges. One of these challenges is

the sparsity of the matrix M [28]. In this case, this translates to a matrix with lost of

zeros i.e. no ratings. Both Spotify and Apple Music claim a music library of more than

50 million songs. According to Spotify’s financial statement 2019, the average Monthly

Active User (MAU) spends around 25h listening to music. Even if one assumes each

listening would be unique, which is a false assumption as stated in the financial re-

port, but just for comparison, this results, at an average length of 4 minutes per song,

in 4.500 = (25 ∗ 60 ∗ 12)/4 songs per year, or an overlap of less than 0.0001% to the

continuously growing library of songs held by Spotify or Apple Music [116]. The sec-

ond problem is the scalability of the above-mentioned algorithms. As they need to

both loop through all users and all items, they scale with a complexity of O(Ux(UxI))

or O(Ix(UxI). Spotify claims a user base of more than 100 million users making the

above-presented options unusable [116].

Model-based Collaborative filtering

Model-based collaborative filtering approaches provide recommendations by first de-

veloping a model that captures the user’s preferences. These models are developed

through various techniques envisioned from the data mining or machine learning com-

munity, i.e. they take a probabilistic approach. A large variety of different methods

such as Bayesian’s networks, Markov decision process or clustering methods have been

used [62]. To deal with the problems of sparsity and scalability of the memory-based

methods, dimensionality reduction techniques are used. The idea behind them is to

project the data into a lower-dimensional space while retaining most of the variance.

Chapter 3. Background 12

Some know algorithms are Single Value Decomposition (SVD) [4] or Principal Compo-

nent Analysis (PCA) [11]. One adaption of SVD is Matrix Factorization (MF) [26]. This

method caught a lot of attention after winning the Netflix prize competition in 2009 [49],

[57]. It works by factoring our sparse matrix M into two smaller ones X and Y. These

one hold the latent representation of the initial user and item data. Then a recommen-

dation r̂u,i can be made by taking the inner product between xu and yi i.e. r̂u,i = xT
u yi.

To learn possible values for X and Y the objective function minx?,y? ∑ru,i

(
rui − xT

u yi
)2

can be minimised. One can also add a lasso or ridge regression +λ
(
‖xu‖2 + ‖yi‖2

)
as

a regularisation method. λ can be tuned or learned to find the optimal amount of reg-

ularisation. The objective function can be optimized using Stochastic Gradient Descent

(SGD) i.e. following the negative gradient of the objective (loss) function to find a local

optimum [58].

This method works very well in practice and yields good results [58] but mostly relies

on explicit feedback data. As explain in the previous section, most user preferences are

recorded in an implicit way. To yield good results on these data sets one needs to make

adjustments on the objective function and optimisation algorithm as proposed by [54].

The first proposed change is to binarize the captured preferences

pui =

 1 rui > 0

0 rui = 0

and add a confidence measurement cu,i on the binarized observations cui = 1 + αrui.

This yields a new cost function incorporating the confidence measurements:

min
x?,y?

∑
u,i

cui

(
pui − xT

u yi

)2
+ λ

(
∑
u
‖xu‖2 + ∑

i
‖yi‖2

)

To make use of the confidence measurement one needs to take all possible U and I pairs

into account. As explained in the previous chapter this leads to a problem of scalabil-

ity. This can be circumvented by using a alternating least square optimisation instead

Chapter 3. Background 13

of the SGD. This reduces the complexity from O(f 2 ∗ I ∗U2) to K ∗ (O
(

f 2N + f 3m
)
+

O
(

f 2N + f 3n
)
) with N being the number of non-zero observed values, which as ex-

plained before, might be close to 0.0001% of the total number of items an K being the

number of alternating least squares that are performed [54].

Even though memory-based and model-based approaches yield good results under the

right circumstances, they both have, in addition to the sparsity and scalability, some

major downsides. One of the most significant ones is the cold start problem. This

refers to the situation in which appropriate recommendations can’t be provided by their

inherent lack of data. If either a new user or a new item enters the CF system, they have

no ratings/preferences [22], [53], [90]. Another problem CF has to deal with is one

individual’s preferences which can be, because of the immense music corpus, unique.

This can lead to users with a unique taste for whom it will be hard to find similar

users. This is also known as the grey sheep or black sheep problem [22], [90]. The

before-mentioned algorithm includes a confidence variable which increases if an item

is observed multiple times. This can lead to a popularity bias in the recommendation as

popular items have higher listening percentages and therefore might be recommended

more often. This can end in a self-feeding, feedback loop [22], [90].

The next section will give an overview of content-based recommendation systems that

can circumvent some of the CF problems outlined above.

3.2.2 Content-based filtering

Content-based recommendation systems are similar to item-based CF methods in the

sense that, they try to find similarities between items to make a recommendation. But

as the name suggests, content-based systems use the content of the items to determine

similarities and not captured user preferences [76]. In the musical domain, the content

refers to the audio signal. However, as pure audio is quite a dense data format (more

in section 3.3), a variety of extracted features from the audio signal have been used.

Chapter 3. Background 14

FIGURE 3.3: The semantic gap in the musical domain. Source: [53]

This can include but is not limited to features like timbral, tonal or temporal ones, or

attached meta-data like genres, categorical or free form tags [53], [76], [83], [102].

The area of automatic feature extraction is one of the main topics for the MIR research

community. Feature extraction techniques will be explained in section 3.3. To make ac-

curate content-based recommendations researches have often used different extracted

features in conjunction. Around the late 2000’s the combinations involved mostly a

technique for genre classification with the addition of simple features such as loudness

or tempo analysis [40], [44], [60], [101]. One can also use more subjective features such

as a song’s mood, as emotional reactions can be a good indication for recommendations

[13], [61]. The problem with these features is to accurately map them to a given user

as emotional reactions also differ from person to person [13], [53]. This is also known

as the ’semantic gap’ problem in music. See figure 3.3 for an illustration. Whereas the

MIR community has made astounding progress in the terms of low- mid-level feature

extraction, bridging the semantic gap remains a challenging problem [53].

Chapter 3. Background 15

By focusing on the audio signal and omit user-captured preferences, content-based sys-

tems can solve some of the major challenges of the CF counterpart. The cold start prob-

lem is solved by measuring similarities of extracted features without relying on pref-

erence ratings. This also avoids the popularity bias as no ratings or listening counts

are taken into account which or may not be desirable as one might want to recom-

mend a top ten hit list for which popularity measurement will be needed. The grey

sheep problem is not entirely solved as the quality of recommendation depends on the

number of total music samples and their genre distribution. Some niche genres might

have a low number of samples to draw from. However, content-based systems also

introduce new challenges. The main one being the quality of the automatic feature ex-

traction techniques. As explained above they also have to deal with the semantic gap

problem. Other challenges might arise if one solely relies on similarity metrics for the

recommendation as this might lead to a problem of novelty i.e. one will only get recom-

mendations for similar songs and it lacks exploration into other genres. However, if the

findings from [52] can be trusted, only 7% of users require a lot of exploration/novelty

to be satisfied with their recommendations. However, depending on the purpose of

the recommendations, they might not need to be novel and therefore the problem of

novelty can be re-framed as a desirable property rather than a problem.

3.2.3 Hybrid approaches

Hybrid approaches are, as their names suggest, a combination of different filtering tech-

niques with the goal to provide better recommendations. The idea behind a hybrid

approach is that, with a combination of different techniques, the overall system can

benefit from the strengths of the individual systems, while negating their drawbacks.

For example can one combine the strengths of both a CF and content-based systems as

proposed by [85] to circumvent the ’cold start’ problem and also narrow the semantic

gap by incorporating CF data in the model. There are numerous ways of combining

Chapter 3. Background 16

said techniques. The example above would fall into the mixed category of combina-

tions. Other main ways of combinations include weighting, switching and cascading.

A weighted combination consists of two individual techniques whose output recom-

mendations are combined using a fixed or learned weight. This allows for an easily

understandable and flexible system as new techniques can be added quickly. Switching

means that different techniques are used in parallel but only one provides a final rec-

ommendation. The confidence of the recommendations from each model could serve

as a switching criterion. Cascading is a method to combine different techniques in a

series. The output from the first technique will be used as the input for the following

one. The in-out puts can differ depending on the goal. One can use recommendations

as output i.e. a first technique would make coarse recommendations where the second

one would refine them. Another way would be to uses the features from the first model

as output and feed that as input for the second one [30], [53], [71].

3.3 Audio features

This section will focus on explaining audio feature representation techniques, namely

the spectrogram and its variations e.g. mel-spectrogram and the mel frequency cepstral

coefficient. Feature extraction methods are generally used if the raw data can’t be used

because of its high dimensionality or if single features do not carry enough information

to contribute to the overall picture. Audio data is highly dimensional. For example, a

typical image from the imagenet dataset is 256 by 256 pixel image with a color range of

0 to 255 can be represented in 16.711.680 = (256 ∗ 256 ∗ 28) bits. The typical audio file

has a sample rate of 44.100Hz with a bit depth of 16 i.e. double that of an image and 2

channels (stereo). For a 4 minute songs this results in 338.688.000 = (44.100 ∗ 16 ∗ 2) ∗

240 bits. Audio is also different from images in that it is serial and not static.

Whereas a single pixel in an image can carry useful information independent of its

Chapter 3. Background 17

(A) Raw audio signal / wave-
form

(B) Spectrogram linear scale

FIGURE 3.4: Audio transformation from waveform to spectrogram with
30sec sample taken from the song awol - drs everyman Hip-Hop genre

location for tasks like object detection, a single sample in audio can not be taken inde-

pendently. This is due to the nature of sound being serial i.e. occurring in waves, which

have to be analyzed in sequence. This is why most audio feature extraction techniques

use a sliding window approach with significant overlap, to capture the meaning of a

specific sequence [124].

3.3.1 Spectrograms

The spectrogram is a representation of how the audio signal’s frequencies change over

time [74]. It displays the magnitude of the Fourier transformation of the audio signal

spitted into frames and weighted windows. These characteristics makes the spectro-

gram one of the most used representation for musical analysis, dating back into the

mid to late 20th century [3], [8]. The spectrogram is created by splitting the audio sig-

nal into three dimensions and display it onto a, generally, two dimensional plot. One

axis, normally the x-axis, displays time and the y-axis the frequency band. The energy

or intensity of the audio signal is highlighted by color coding of the plot. The energy

refers to the amount of pressure created by the source, which is in turn picked up by

the microphone. In general, signals in the low frequency region (bass) carry a lot of en-

ergy whereas the high ones carry only small amounts of energy [74]. An example of the

audio signal before transformation and be seen in figure 3.4a and after transformation

in figure 3.4b.

Chapter 3. Background 18

(A) Short Window (B) Long Window

FIGURE 3.5: Comparison of short and long window Fourier transforma-
tion

The first step for the spectrogram creation consist of the audio decomposition into fre-

quencies. As one can see the waveform is a continuous wave of many overlapping

frequencies with different energy along the time domain. To decompose the wave

into multiple waves for each frequency the Fourier transformation can be used [10].

This transformation imagines each function as combination of waves but at different

frequencies. However, performing the decomposition on the entire song, would yield

very precise frequency identifications but nearly all information of frequency transition

would be lost. That is why the audio signal is splitted into chunk’s i.e. the transforma-

tion is performed using a sliding window where one can assume the signal is station-

ary. As one can see in figure 3.5a where a small window of 25 samples, which results

in 1.1ms, is used, it is easy to identify at which times frequency changes occur but the

frequency identification is blurry. In contrast figure 3.5b shows a very large window of

2048 samples (93ms) where frequency resolution increased but at the same time, the

time resolution decreased. In practice, a variant know as Short Time Fourier Transform

(STFT) is used which combines the window, overlap and Fourier transformation into

one function. One can use different shapes of windows which are chosen based on

the assumption of the signal. One common window function is the Hann-window [7],

which has the shape of a raised cosine function with non-zero fall of at the edges. To

compensate for information loss close to the edge, overlap is added.

This serves as the baseline representation for more further processing, namely log scale

and mel scale and discrete cosine transformation. This will be explored in the following

section 3.3.2.

Chapter 3. Background 19

3.3.2 Mel Frequency Cepstral Coefficient

The MFCC is a audio signal representation which is based on the spectrogram but with

more added transformation. These reduce the dimensionality and encapsulates infor-

mation which should resemble how the Human Auditory System (HAS) perceives the

audio signal [6], [25]. The transformation from a spectrogram to MFCC can be broken

into three steps:

• Logarithmic scale: A logarithmic transformation is a non-linear operation in which

an interval is not increased linearly but by the a factor of its base logarithm. This

is done as the HAS perceives loudness not on a linear but on a non-linear scale

which is modeled by the Steven’s power law with an exponent of 0.67 meaning

to double the perceived loudness energy of the signal has to be about 7 times

as strong [2]. Therefore, the log transformation will match the extracted energy

levels from the spectrogram to perceives loudness by the HAS

• Mel-scale: The mel- or melody-scale, is another non-linear transformation which

based on the perceived level of pitch by the HAS. [1] discovered that correct pitch

identification/recognition varies at different frequencies. The HAS seem to be

able to better identify the correct pitch at lower frequencies compared to high

ones. The perceived pitch follows an somewhat exponential decay at higher fre-

quencies. One can map an audio signal into m mel from frequency f with the

following function: m = 2595 log10

(
1 + f

700

)
[1]. After the conversion into mel’s,

one can construct triangular filter banks using meli : meli+1 . To retrieve the mel-

scaled output one has to multiply the log-scaled input with each filter bank and

add the output together. The output of this transformation is also known as a

mel-spectrogram which is the main data source for this project.

• Discrete Cosine Transform (DCT): The last step of the MFCC creation is to take

the DCT from the log- and mel-scaled spectrogram. This is similar to the first step

of the spectrum creation where the DFT is used to assume a function as a wave.

Chapter 3. Background 20

Here one assumes that output of the above explained step can be represented as

(cosine) waves. Each n, m frame can be represented using n ∗ m cosine waves

stacked together using different coefficients. By analyzing the coefficients one can

identify the ones that contribute the most towards a signal and ones that carry less

information. By taking the top k coefficients, the amout of features are reduced

with a limited loss of information [86].

This operation is performed frame by frame, which means, that information in the time

domain i.e. changes of frequencies / mels over time i.e frames is not taken into account,

even though some timely information is used because of the windowing process. To

incorporate more of the dynamics one can use a delta. This takes the difference between

two consecutive frames as a new value with added padding at the end. The space

between the frames is measure in orders i.e. taking two consecutive frames is a first

order delta, taking the first and third frame is a second order delta etc. [124]

3.4 Machine Learning Methods

This section presents an overview of the selected ML methods and their functions. This

should only be taken as a short introduction as it will only highlight their specialties

and no broader context or explanation will be given.

3.4.1 Bag of Tones

This section will present an overview of the Bag of Tones (BoT) approach. The term

was introduced by [87] but it is in its essentials an adaption of the well established Bag

of Words (BoW) approach used mostly in Natural Language Processing tasks [70]. The

main idea behind the BoW approach is that a word embedding space can be created

which captures the meaning of a word in a sentence in a vector that can serve as an

input for ML methods. The idea behind the BoT approach is the same only that the

Chapter 3. Background 21

(A)
Low

(B)
Mid

(C)
High

FIGURE 3.6: Illustration of VGG16 low-, mid- and high-level feature ex-
traction

inputs are not sentences but MFCC’s. This is done by building a dictionary or a set of

tones which serves as the embedding space. This space can be arbitrarily complex i.e.

one could build an embedding space of 10 features or 10.000.000 features. This embed-

ding space serves as a general representation of all songs. Therefore, each song can be

mapped to the embedding by measuring the occurrences. In this case, the mappings

for each song can then be used to train a regression model.

3.4.2 Convolutional Neural Networks

Convolutional Neural Network (CNN) is a ML technique that is mostly used in the

computer vision domain i.e. for the analysis of images. They can be broken down

into two sub parts: The first one are the convolutional operations which serve as a

feature extraction technique. The second one are fully connected layers that perform

the classification or regression task using the features from the convolutional layers as

input. CNN’s first appeared around the 1980s [9] but gained broad popularity after

it has been shown that they can achieve excellent performances in computer vision

challenges [81].

The main advantage of CNN’s over traditional feed-forward neural networks is given

through the use of filters with shared weights which slide over the input (i.e. image)

instead of fully connected neurons. It provides much more manageable and trainable

Chapter 3. Background 22

amounts of parameters and it resembles the processing of visual information in hu-

mans/animals [36]. The sliding operation is done via a matrix multiplication with a

chosen filter size. The stride controls the shift for each operation i.e. a stride of 1 means

the filter is shifted by 1 pixel after each operation. To capture information at the edges

of the input, padding can be used. These convolutional operations are stacked after

each other in layers with pooling operations in between. Pooling operations reduce the

size of the image or feature map using the same matrix multiplication technique as the

convolutional operations. This is done to make the network more robust i.e. prevent

overfitting but also to extract features in a higher level of abstraction. Compressing the

input will force the network to focus more on the broader context of an image. This

means the deeper the network the more fine-grained level of abstractions can be cap-

tured by the filters [81]. An illustration can be seen in figure 3.6.

3.4.3 Recurrent Neural Networks

The Recurrent Neural Network (RNN) architecture is quite different from CNN’s and

more close to a normal neural network structure but with one major difference as they

allow loops and therefore allow an analysis of time-dependent data. This is done by

keeping information of the previous input while processing new inputs. This previous

information is kept in the state of an RNN cell. This mimics the way humans ana-

lyze time-dependent information such as text [98]. A special version using the RNN

architecture is the Long Short-Term Memory (LSTM) [21]. As the name suggests this

network is able to analyze short and long term dependencies. This has proven to work

very well not only for text analysis but also for speech recognition and music analysis

[104], [112].

An illustration of an LSTM cell can be found in figure 3.7. Every input is passed through

the upper part of the cell called the cell gate. The first interaction seen in the top left

is called the forget gate. This gate decides if the information passed through the cell

Chapter 3. Background 23

FIGURE 3.7: Illustration of an LSTM cell. Source: [126]

gate at that point in time is kept or not. The output is a continuous number between

0 (don’t keep) and 1 (keep). This information is then passed to the input gate which

updates the old state of the cell with the information from the forget gate. The last step

is the output gate. This transforms the input from the cell gate to the output which will

be the new cell state which can be seen in the top right of the image. But the most

important information is kept in the hidden state which is carried over to the new cycle

of the network. This can be seen at the bottom right of the image. This continuous

forward pass of the cell state and hidden state allows it to keep track of short and long

term dependencies [21].

24

Chapter 4

Dataset and Hardware Setup

4.1 Dataset

The dataset for the project was provided by UMG. It consists of 53.202 unique songs,

taken from different genres. The audio was not provided in raw format (i.e. audio

signal) but as magnitude spectrograms. The spectrograms were computed with the fol-

lowing settings: a sampling rate of 22.050Hz with summed stereo channels, a window

length of 1024 samples (46ms) a hop size of 512 samples (23ms) a frame length of 256.

The outputs for each song were split into 6sec patches with 513bins and 256 frames

each with zero-padding added for the last patch. This resulted in 22,35,781 patches and

about 1.1 terabytes of data. The dataset was divided into 10 folds each one holding 10%

of the data. Each fold contained complete songs i.e. all patches for a given song. Fold

0 to 6 were used as a training set. Fold 7 served as a validation set. Fold 8 and 9 were

used as a test set and served as the input for the predictions seen later on. The labels

for this project are latent factors. They were learned using an implicit CF dataset from

UMG which contained both in house implicit feedback as well as feedback for their

music listed on Spotify. However, in contrast to a traditional CF dataset, this one con-

tained playlist and item (songs) relations and not user and item relations. The model

outlined in section 3.2.1 was used to learn the latent factors. This resulted in (200, 1)

Chapter 4. Dataset and Hardware Setup 25

dimensions for the latent factors for each song. UMG also provided some metadata of

the songs which contained artist/band names as well as song names.

4.2 Preprocessing

The music data was provided as magnitude spectrograms, but as explained in section

3.3.1 to enhance the individual audio features, it is beneficial to convert the amplitude

to Decibel (dB) and apply the mel-scale. This was done using the Kapre [109] library

which is based on the Keras [95] layer architecture and therefore allows On-GPU pre-

possessing. The AmplitudeToDB layer was used to convert the input to dB and apply a

log scale and the layer Filterbank to apply the mel-scale. The variable NO_MELS refers

to the number of filter-banks i.e. the number of output features. The default setting

was 128 filter-banks. This setup was used as the first two layers in all following mod-

els. Looking at the output distribution of these two layers one can confirm they work

as intended. See figure 4.1a and 4.1b.

1 model.add(kapre.utils.AmplitudeToDB(input_shape=(513, 256, 1), amin=1e-10,
top_db=80.0))↪→

2 model.add(kapre.filterbank.Filterbank(n_fbs=NO_MELS, trainable_fb=False,
sr=22050, init='mel',↪→

3 fmin=0, fmax=22050 // 2,
bins_per_octave=12,
name='mel_bank'))

↪→

↪→

The provided latent factors had very small numerical (absolute) values, in the range

of roughly -0.015 to 0.031. Following intuition and suggestions found in [119] and [17]

the factors were normalised into a range of -1 to 1 using x′ = x−min(x)
max(x)−min(x) with x′

being the normalised value. This was a bad idea for two reasons. First, the output

of the matrix factorization models tends to be normally distributed as can be seen in

figure 4.2. It would have been better to use mean normalisation in that case i.e. x′ =

Chapter 4. Dataset and Hardware Setup 26

(A) Amplitude to Decibel (B) Mel filter-banks

FIGURE 4.1: Output distribution

x−average(x)
max(x)−min(x) . The second reason is that min-max normalization is very sensitive to

outliers. Given a large enough sample size and a normal distribution, outliers tend to

occur. This meant most of the information captured by the latent vectors, were lost.

This meant that all following models would learn a mean-representation over all songs

and therefore produce non-usable output. Looking at figure 4.3a one can see nearly

all songs, except a few at the beginning, yield similar latent vectors after the min-max

normalization. However, it might not be a good idea to normalize the latent factors at

all as the relative magnitude of the different factors is correlated with their importance

for recommendation purposes and this information should be kept. Hence, the latent

vectors were only scaled around the mean with unit variance. This can be seen in figure

4.3b.

4.3 Hardware requirements and its difficulties

Music data has a lot of licensing implications which are very complicated [121], [122].

That is why UMG required that no data leaves their environment. This meant all exper-

iments were conducted using a Virtual Machine (VM) on the Google Cloud Platform

(GCP), Compute Engine (CE). The provided VM had 26 Gigabyte (GB) of memory, a

Chapter 4. Dataset and Hardware Setup 27

FIGURE 4.2: Distribution of latent factor

(A) Latent vectors after min-
max normalisation

(B) Latent vectors after scale
around mean with unit vari-

ance

FIGURE 4.3: Latent factors preprocessing

Chapter 4. Dataset and Hardware Setup 28

4 core CPU based on the Intel Haswell architecture (exact model unknown) and one

Nvidia Tesla K80 GPU.

A dataset that spans about 1.130 Gigabyte brings some difficulties with it. The first one

being that it does not fit into Memory. GCP provides VM’s with 1.4 to 3.8 TB of mem-

ory but the smallest variant starts at about £8.000 per month [117]. To make use of the

CPU for batch preparation while the GPU is performing training of the model, a cus-

tom data generator for train, validation and test data was written [115]. It is based on

the Keras sequence object. This resulted in a training time of about 24hours per epoch

on 10% of the data. It took about 4 days and a lot of tinkering with the HDF5 library to

find that the slow learning was due to I/O bound of the chosen storage option: Zonal

standard persistent disks. GCP offers faster storage options namely Local SSD. However,

this option had the unfortunate drawback that the VM could not be shut down. This

also meant that adding a second GPU, later on in the project, was not an option any-

more. On very simple models with < 1.000.000 parameters and only a few layers the

train time was still I/O bound at about 40 minutes per epoch on 10% of training data

but this was acceptable compared to the 24h from before. Being I/O bound, at least for

simple networks, also means that loading had to be as fast as possible. This meant op-

timizing every line of code for fast operations. Therefore, a lot of helper functions and

files (dictionaries and numpy arrays) were created to allow fast indexing and access to

information.

Another problem arises if the 99,99% up-time that GCP guarantees in its Service Level

Agreement (SLA) is not enough and the VM dies. This occurred on the 06. August

2019. Because of the chosen storage options recovery was unfortunately not possible

which resulted in the loss of all saved models, predictions and metrics/figures. For

this reason, the qualitative evaluation had to be changed from experts interviews with

musicology experts from UMG to a small recommendation comparison performed by

me.

29

Chapter 5

Methodology

5.1 Bag of Tones model

The BoT model, described in section 3.4.1, should serve as a base-line model to compare

the performance and recommendations for the latter discussed models. The results of

this model can be found in section 6.1. The Bag of Tones representation can be split into

4 parts:

• Feature extraction: As with all models that try to build embeddings i.e. an ab-

stract representation of the input, one needs to extract features. This was done

using MFCC’s, in detail explained in section 3.3.2. In contrast to the following

neural network models this method does not learn a feature extraction but re-

quires a pre-computed one. For this reason, the MFCC with first and second

order delta was chosen as this tries to encode more information into lower di-

mensions but also including time-dependencies. The lower dimensionality with

MFCC’s compared to mel-bands reduces the computing time for the dictionary

creation. This was done using 13 coefficients. With added first and second order

delta this resulted in a total of 39 dimensions. Only the training data was used for

the dictionary creation.

• Dictionary: The dictionary serves as the embedding space and was learned using

Chapter 5. Methodology 30

the K-Mean algorithms. The dictionary size was set to k = 4000 somewhat arbi-

trarily but [85] has shown good performance using this setting. In a future ver-

sion, one could use the ’Elbow’ method to find a suitable number of clusters. Due

to the large training size of 770 Gigabyte and the properties behind the classical

K-means algorithm which requires all samples (in memory) to compute distances

and update centroids, a mini-batch K-means variant proposed by [69] has been

used. The training would stop after the average movement per centroid update

was lower than 1× 10−6 for 10 following batches.

• Compute song embedding: To compute the embedding per song, one can sim-

ply create a histogram representation of each song by counting how often each

centroid has been selected.

• Regression: In the last step, one needs to build a mapping between the embed-

dings per song and the desired label. There are multiple regressions options like

linear, lasso or rigid regression, one could also use a decision tree for this prob-

lem. Another option would be a Neural Network constructed with dense layers

only, which was chosen for this problem. The network consisted of two dense

layers with 1024 neurons each and an output layer with 200 dimensions. The ex-

ponential linear unit function was used as the activation function for the dense

layers and the mean squared error function was used as the objective function. A

detailed description of these two functions can be found in the following section

5.2.1.

5.2 Convolutional Neural Networks

This section will outline the methodology behind the use of a convolutional neural net-

work outlined in section 3.4.2. The input for each following model will be the provided

data by UMG i.e. powered spectrograms and the first two layers for each model will

Chapter 5. Methodology 31

32

51
2

Input

32

12
8

Mel Fil-
terbank

64

12
8

Conv 1

64

64

Conv 2

64

64

Conv 3

16
32
0

Flatten

51
2

Dense
1

20
0

Output

FIGURE 5.1: Basic Convnet

be the AmplitudeToDB and Filterbank as described in section 4.2. Each following model

has been trained using 10% of the training data, 100% of the validation data and 100%

of the test data and 5 epochs. Using 10% of the training data was chosen because of the

long training due to the difficulties outlined in section 4.3.

5.2.1 Basic Convnet

The first experiment was conducted using a very simple network architecture. An illus-

tration of the network architecture can be seen in figure 5.1. The graphic was created

using an adapted version of [118]. As described in section 4.1 the input had the di-

mensions of 513 by 256. Using a batch size of 32, this resulted in the input dimensions

of 32 by 513 by 256. The Filterbank layer reduces the number of features from 513 to

NO_MELS which has been set to 128. This is passed into the first convolutional layer

with 64 kernels, each having a size of (3, 3) and a stride of (1, 1) with padding so input

and output dimensions are identical. The padding setting was used more because of

Chapter 5. Methodology 32

convenience to keep track of the dimensions throughout the network than of necessity.

After each convolutional layer follows a max-pooling operation. This was done to re-

duce the size of the feature maps which is a computational benefit and might dampen

overfitting but also to return an abstract of the features maps (by applying the max op-

eration) and let the following layer focus on these, more abstract, representations. One

can also use a convolutional layer with a stride and no padding to reduce the size, this

might lead to better results than max-pooling in some cases [92]. The max-pooling filter

sizes for the first layer are (2, 2) followed by (2, 4) and lastly again (2,2) resulting in a

16 by 16 output. A three-layer design was chosen with the assumption that the first

layer would capture low-level features (like edges), the second one mid-level features

and the last layer high-level features. After the feature extraction a flatten operation

was performed which turns all (n, m) feature maps into a (n ∗ m, 1) vector, which is

followed by a fully connected (dense) layer with 512 neurons. The size of 512 was

chosen somewhat arbitrary but with the goal in mind to keep the total number of pa-

rameters of the model < 10 million and most of them are located in the dense layers

i.e. 16.384 ∗ 512 = 8.3million. The output layer has 200 neurons which are identical to

the target vectors of (200, 1). All layers, expect from the output, were initialized using

the ’HE normal’ distribution as it shows superior performance to a random initializa-

tion [97]. The output layer was initialized with zeros. Rectified Linear Unit (ReLU)

was one of the major reasons deep convolutional networks work so well in the first

place as its fast calculation allows converges at reasonable training times while keep-

ing non-linearity [81]. But ReLU has the drawback that dead neurons i.e. gradients of

0 can occur. To avoid dead neurons and improve converges an adaption of ReLU the

Exponential Linear Unit (ELU) with a chosen α of 1.0 was used [96].

R(x) =

 x x > 0

α · (ex − 1) x <= 0



Chapter 5. Methodology 33

Optimisations were performed using the adam optimiser with an initial learning rate

of 1× 10−4, beta1 of 0.9, beta2 of 0.999, epsilon of 1× 10−6 and a decay of 1× 10−8.

Adam was chosen over stochastic gradient decent as it shows better, faster and more

stable converges which is beneficial given the low number of epochs [89], [114]. Mean

squared error MSE = 1
n ∑n

i=1
(
Yi − Ŷi

)2
was chosen as the objective function as it has

been proven well for regression task and aligns with the goals of predicting latent fac-

tors.

The results from this model can be seen in section 6 in table 6.2 and the training history

in figure 6.1a.

5.2.2 Convnet architecture adjustments

From the previous section, we have seen that the basic covnet model seems to overfit to

our training data. One common technique to prevent overfitting is to use more train-

ing data. This could be done as currently, only 10% of the training data is in use, but

would increase the training time significantly. Another way to reduce overfitting is to

introduce dropout which will randomly deactivate a percentage of neurons and hence

create a more robust network [93]. However, dropout will require significantly more

computational resources. A computational less intensive approach is to introduce batch

normalization. By reducing the covariance shift between our learned mapping function

and the target, the model should be able to generalize better with shifted, but similar in

terms of distribution, input data. For this model batch normalization was added after

each convolutional operation. The results can be seen in table 6.2 and figure 6.1b

As the experiments have shown, the problem of overfitting is removed by batch nor-

malization. Now one can change the network architecture with the hope of a better

optimization i.e. lower loss. One common way would be to add more layers i.e. mak-

ing the network deeper. There are two options, increasing the number of convolutional

Chapter 5. Methodology 34

(A) Original Input (B) Output filter 0

(C) Output filter 1 (D) Output filter 4

FIGURE 5.2: Compare original Input and output activation’s after first con-
volutional operation

operations and therefore making more fine-grained feature representations or increas-

ing the number of dense layers. The latter option will be investigated first. Adding two

more dense layers increases the number of parameters by about 500k. The results can

be seen in table 6.2. Having more layers the number of neurons in each layer can be

adjusted. For the second experiment, the number of neurons in the hidden layers were

increased to 2048. This large increase in neuron was chosen to investigate if significant

changes occur as a 4-fold increase in the number of neurons will result in a 4+ fold

increase in the number of parameters.

This might lead to the assumption that the feature extraction phase i.e. convolutional

operations are not able to capture the necessary information that more neurons in the

dense layers would have any effect. One can also vary the filter sizes to smaller or larger

ones and therefore focus on more fine-grade or coarse representations. However, this

experiment was also unsuccessful as it only yields a slight improvement in validation

and test loss. All of the experiments so far have shown only small improvements over

Chapter 5. Methodology 35

the base-line model. This seems to indicate that there is some architectural problem

in the network. One can try to investigate the problem by visualizing the filters, and

maybe more importantly, the filter outputs to get a sense of what the network is learn-

ing. Figure A.1 in appendix A shows the visualisation of filter weights. Following a

similar analysis as in [105] one can see that the assumption of edge detection holds

true in figure A.1a with some filters resembling low or high pass filters. This can be

confirmed by looking at the output actions of these filters. This can be seen in figure

5.2. The sample input, seen in figure 5.2a is the instrumental version from the song

Still Falls The Rain from the J-Pop genre. Analyzing the outputs one sees that filter 0 i.e.

figure 5.2b seems to act as a high pass filter while filter 4 i.e. figure 5.2d seem to be the

opposite acts like a low pass filter. Notably, filter 1 i.e. figure 5.2c seems to focus on

silent parts as it has its highest activation at the time the original song is silent.

Using a filter size of (3, 3) has shown great success in music classification and tagging

tasks [80], [100] and the inspection seems to indicate the filters learn some use full

feature extractions. This makes sense as the idea of small filters i.e. make use of local

correlations, overlaps with the spectrograms which also display local correlations [105].

But [106] has shown that different filter shapes, ones that only slide in the frequency or

time domain, can result in better performance. It might be the case that the task of

latent factor prediction relays on longer time dependencies or it needs to capture a

wider range of frequencies. For this experiment, the 2D convolutional operations were

switched out for 1D convolutional operations. The results can be seen in table 6.2.

Given that all of the above experiments have failed or yielded only slight improvements

over the baseline, instead of trying more complex adjustments to the model, one can

also change the input or target selection for the model. As described in detail in section

4.1 the input spectrograms are only 6 seconds long. Most successfully networks in the

field of audio classification seem to use longer input sequences of about 30 seconds

or longer [48], [85], [88]. Unfortunately, using a longer input sequence of about 30

seconds is not possible with the provided hardware, given a batch size of 32, as the

Chapter 5. Methodology 36

allocation of memory for the larger inputs per batch yields an out of memory error. A

reduction in batch size from 32 to 8 however worked. As one might recall from personal

experience, most songs are comprised of an introduction, the main part or body of the

song and a conclusion [34] were the body of the song should hold the most amount of

information. To extract the main part, one can simply ignore the first t second at the

beginning and end of a song. According to the analysis of Billboard Top 100 Songs in

2015-2016 by [111] about 87% of songs have an intro and outro length of 30 seconds

or shorter. Therefore, two experiments have be conducted: one with a input length of

3 segments (18 seconds) and a skipping of the first 5 and last 5 segments (30 seconds

each) with a batch size of 32 and a second with the same skipping but an input length

of 10 segments (60 seconds) an a batch size of 8. The results can be seen in table 6.2 as

well as the quantitative evaluation in section 6.6.1.

5.3 Recurrent Neural Network

The main idea of RNN is that data is analyzed in the temporal domain while keeping

an internal state (i.e. memory) of the previous time steps which yielded impressive

performances in audio related tasks such as speech recognition or music generation,

for more detail see section 3.4.3.

The reasoning behind using a variation of the RNN i.e. the LSTM architecture for this

task is the same as the idea behind a convolutional operation in the time domain. How-

ever, the convolutional operations have seen limited success, but this does not mean

analyzing the time domain is irrelevant. Convolutional operations in the time domain

learn a static representation of filters which will be applied to the input. Their output

is not influenced by the output of the previous operation. This is not the case with

LSTM’s as they keep a time dynamic representation.

Chapter 5. Methodology 37

The first layers of the network i.e. AmplitudeToDB and Filterbank haven been kept the

same. The previous section has shown that using longer sequences from the main body

of the music seems to increases performance. Using longer sequences should, in theory,

align with the goals of the LSTM. For faster execution, the CUDA deep neural network

(CuDNN) implementation of the LSTM (CuDNNLSTM) has been chosen.

The exact implementation and results from this model can be seen in section 6.3.

5.4 Pre-trained Neural Networks

Given the methodology of CNN’s outlined in section 5.2.1 and 5.2.2 and the achieved

results outline in section 6.2 one can assume that CNN’s are able to learn representative

features and a regression function for this task. The train trajectory seen in figure 6.1b

shows a non-converged model which is heading to a better optima. This leads to the

assumption that longer training time i.e. more epochs, could lead to a better model.

However, this was not possible given the constraints outlined in section 4.3. Here one

can use pre-trained neural networks.

Using pre-trained networks is one of the main research areas in the domain of transfer-

learning. This domain set out to address the idea of transfer knowledge learned in one

domain and adapt it to a new domain [91]. As discussed in section 3.4.2 and 5.2.2 dif-

ferent layers of a CNN learn different sets of filters for low-, mid- and high level feature

extraction. These filters which serve as feature extraction methods can be adapted into

new domains by leveraging their learned weights. It has been shown that this not only

works in the domain of image classification [91] but also in the domain of music tagging

[94], [108].

Two different pre-trained networks have been selected. The first one being the Xcep-

tion network trained on the ImageNet dataset which is the current best performing

Chapter 5. Methodology 38

model in top 1 and top 5 classification accuracy for the ImageNet classification chal-

lenge. This model can be broken down into three blocks: Entry flow, Middle Flow,

Exit Flow. As this model is trained on an image classification task we are not inter-

ested in high-level feature maps. Therefore, only the Entry Flow and Middle Flow up

to block block11_sepconv3_bn or layer 104 have been used [110]. The second model is

a much simpler 5 layer CNN model which was trained for music tagging [108]. From

this model, all 5 layers were used, as the input data on which the model was trained on,

is similar to the one used in this project and therefore low-, mid- and high-level should

align.

The domain adaption/network alignment can be done in multiple ways ranging from

very simple to very complex. For this project, only two simple approaches have been

chosen as they do not require large amounts of training data or computational re-

sources. The first approach utilizes the pre-trained network with fixed weights and

only the newly added layers are trained. The second approach uses a very low learn-

ing rate to adapt the learned weights for the target domain without losing the informa-

tion gained from the source domain. The exact implementation of these models and

approaches, as well as the results, can be found in section 6.4.

5.5 Triplet Neural Network

Analyzing the results given by the quantitative evaluation outlined in section 6.6.1 so

far, one can see that the base-line model outperforms all other models in terms of over-

lap so far. There might be multiple reasons for this behavior. One might be that the

low complexity of the BoT model fits better given the amount of training data. Even

though extensive research and experiments into the chosen hyperparameters of the

above-discussed models has been conducted, it might be that they are not suitable for

the task at hand. It will most probably be a combination of multiple reasons. Given

that the model using embeddings (i.e. BoT) presents the best performance so far, the

Chapter 5. Methodology 39

last conducted experiments also involves a model that builds embeddings of the songs

before a regression model is trained.

The embeddings were build using a special objective function called triple loss. This

was first introduced by [103] and the idea is similar to [42]. As the name suggest, the

objective function contains three samples which are called anchor, positive (sample)

and negative (sample). To create an embedding the distance between anchor and posi-

tive should be minimize while the distance between anchor and the negative should be

maximized. This can be formulated as:

N

∑
i

[∥∥ f (xa
i)− f

(
xp

i
)∥∥2

2 − ‖ f (xa
i)− f (xn

i)‖
2
2 + α

]

which can be simplified into:

L = max(d(a, p)− d(a, n) + margin, 0)

were a = anchor, p = positive, n = negative and α = margin. Given the objective

function the sampling of the triplets (a, p, n) is of importance. Choosing triples which

fulfill d(a, p) + margin < d(a, n) is called easy triplets. However, this might lead to

an embedding collapse i.e. a loss of 0 which is not desirable as the network is not

incentivized to learn meaningfully embeddings. The second option is to create hard

triplets which is the complete opposite i.e. d(a, n) < d(a, p) but this is hard to train

i.e. requires more computational resources. The last option is called semi-hard negatives

were the loss should not collapse to zero as the added margin pushes d(a, p) to be larger

than d(a, n) i.e. d(a, p) < d(a, n) < d(a, p) + margin [103], [125].

The batches of triplets can be created in two ways, one creates them beforehand and the

other during training. Generally, the second option is favorable as it creates better triples

for each training cycle. However, given the provided hardware outlined in section 4.3

this was not possible for two reasons: the I/O bound slows the triplet selection severely

and this method requires fairly large batch sizes (larger than 1.000) which yields out of

Chapter 5. Methodology 40

memory errors. Therefore, the inferior offline selection method has been chosen.

The exact implementation and results from this method can be seen in section 6.5.

5.6 Evaluations

Determining the quality of the provided recommendations in an offline scenario is not

easy. As discussed in section 3.2.1, a recommendation system needs to provide nov-

elty, diversity and serendipity. But these factors are difficult to measure in an offline

scenario. This section will discuss some common quantitative evaluation methods and

which type of qualitative evaluation was performed.

5.6.1 Quantitative evaluation

A relatively simple measurement for the quality of a model, in general, is its objective

function. This means one can plot the loss and make assumptions about its quality

but it is difficult to make assumptions about recommendations directly from the loss

of the model. One way this could be done would be to measure the overlap between

recommendations generated from the model and recommendations using the labels as

ground truth.

Recommendations can be made based on the similarity of predicted and true latent fac-

tors and with the dot product between the two latent vectors i.e. playlist and songs. For

similarity one can measure the cosine or euclidean distance, see section 3.2.1, between

predictions and labels and find the top k ones with the smallest distance and present

them as recommendations. This can be done for each song using the predictions and

the labels as input and calculate the overlap between the two generated recommenda-

tions. One has to find a reasonable setting for k as a value to large would increase the

overlap based on probability i.e. for k = 60.000 the overlap would always be 100%. For

this project, a k of 10, 50, 100 and 500 was chosen. A small k might yield an overview on

Chapter 5. Methodology 41

the accuracy of the model predictions and a large k might give some information about

the novelty. One has to take into account that predictions can be correct by pure chance.

This can be done using ∑k
i=1

k
(N−1)k

k with k equal to 10, 50, 100 or 500 and N equal to our

number of songs. The number of unique songs in the test set is 11.333. This will results

in probabilities of <0.01% for all chosen number of k’s and hence can be ignored it this

case.

The results for the quantitative evaluation can be found in section 6.6.1 and table 6.6 for

similarity based recommendations and in table 6.7 for the dot product.

5.6.2 Qualitative evaluation

Quantitative evaluation is useful to get a quick overview of the performance of the

models/recommendations. However, these measurements only capture the ability of

the model to predict the latent factors and therefore to mimic the information encap-

sulated in them. Having a high overlap can assure correct recommendations but a low

overlap, in contrast, does not have to necessarily mean recommendations are bad. Us-

ing qualitative evaluation could reveal if recommendations outside of the overlap are

still valid i.e. if they make sense in the context of the recommended songs. This means

to evaluate if the recommendations are similar in genre, mood or another aspect. Qual-

itative evaluation was performed using a human trial. Spotify playlist were created out

of the recommendations by querying the recommended ISRC’s using the Spotify API

through the Spotipy [127] library for python. This was only done for the top 10 recom-

mendations as total playtime for each playlist had to be manageable. The songs who

are selected as the source of the recommendations for whom the recommendations are

made for should be carefully selected to capture some meaning while analyzing the pre-

dictions. However, I am not a musicology expert, therefore, my music select might not

capture the optimal amount of information. The song Swan Lake the 20th composition

by Pyotr Ilyich Tchaikovsky has been chosen to see whether suitable recommendations

Chapter 5. Methodology 42

for classical music can be provided as they tend to include the challenge of varying the

style of music within a song. The second song Klavier by the band Rammstein has been

chosen to check whether the model recommendation might focus on a certain language

e.g. German and if the recommendations fall into the chosen genre i.e. rock.

The results can be found in section 6.6.2.

43

Chapter 6

Experiments and Results

This chapter will give an overview of experiments and results for the methods dis-

cussed in detail in chapter 5.

6.1 Bag of Tones

This section will outline the experiments and results using the Bag of Tones represen-

tation in detail explained in section 3.4.1 and 5.1 respectively. The results can be seen in

table 6.1.

The MFCC features, as well as the first and second order deltas, were computed using

the Librosa library [99]. The settings for the intermediate mel-scaled spectrograms are

identical to the ones outlined in section 4.2. For the mini-batch k-means, the version

implemented in scikit-learn was used [75]. The dictionary was trained using 10% of

the training data which took about 72 hours. The regression was performed using a

neural network implemented in Keras [95]. The main bottleneck for this model was

CPU performance as both the mini-batch k-means well as the MFCC transformation

were CPU bound.

The results of the baseline model look promising with decent quantitative evaluation

seen in table 6.6 and 6.7.

Chapter 6. Experiments and Results 44

Name Parameters
(trainable)

Training
time

Validation
Loss

Test
Loss

BoT normal 6, 401, 224 840 min 0.9603 0.9598
BoT three dense, 2048 neurons 16, 996, 552 840 min 0.9599 0.9572

TABLE 6.1: Results table for Bag of Tones model

(A) Basic convnet (B) with batch normalisation

FIGURE 6.1: Train history

6.2 Convolutional Neural Network

This section will outline the experiments and results using CNN’s in detail with the

methods discussed in section 5.2.

The results from the basic model outlined in section 5.2.1 can be seen in in table 6.2

and the training history in figure 6.1a. The loss seems to decrease stably over the 5

epochs which is a good sign. However, after the first two epochs, the validation loss

is increasing which might be an indication of overfitting. This means the model is

remembering the training data instead of learning a general representation.

• CNN with batch normalization: The train history for the model with batch nor-

malization can be seen in figure 6.1b. The model shows better performance in

validation and test loss with no signs of overfitting so far.

• CNN with batch, 10 epochs: To check whether the performance can be improved

Chapter 6. Experiments and Results 45

by longer training time the number of epochs was increased to 10. This, however,

only showed small improvements, therefore, other architectural changes were ex-

plored.

• More dense: Adding more dense layers results in a slight improvement in vali-

dation and test loss.

• More dense and more neurons: Even though adding more dense layers yielded

an improvement, adding more neurons in these dense layers yielded only negli-

gible improvements in validation and test loss.

• CNN with more conv layers: Unfortunately, this experiment only yielded a slight

improvement in validation and test loss. This might lead to the assumption that

the amount of feature extraction achieved by three layers is sufficient.

• Slide in frequency domain / Slide in time domain: It does not seem that a slide

in the frequency domain or time domain, which should capture more of the serial

nature of audio, seems to work in this case as it achieves lower validation and test

loss than the basic model.

• 18sec sequence, skip 30sec, batch 32: This was the first model were the I/O

bound has been eliminated and the complexity of the model made it GPU bound.

As explained in section 4.3, adding a second GPU was not an option. The combi-

nation of input sequences and the focus on the body of the song seem to help as

it achieved a lower validation and test loss.

• 60sec sequence, skip 30sec, batch 8: The increased input size which leads to more

parameters in combination with a smaller batch lets the model overfit for or train

and validation data. This could be prevented by adding Dropout. However, due

to time constraints, this was not explored.

Chapter 6. Experiments and Results 46

Name Parameters
(trainable)

Training
time

Validation
Loss

Test
Loss

CNN normal 8, 566, 216 290 min 1.0015 0.9998
CNN with batch normalisa-
tion

8, 566, 600 294 min 0.9701 0.9823

CNN with batch, 10 epochs 8, 566, 600 2750 min 0.9642 0.9687
More dense 9, 091, 912 293 min 0.9685 0.9792
More dense and more neurons 42, 433, 864 290 min 0.9639 0.9827
More conv layers 36, 349, 640 294 min 0.9701 0.9799
Slide in frequency domain 2, 751, 464 290 min 1.1637 1.1774
Slide in time domain 2, 243, 560 293 min 1.0347 0.9889
18sec input sequence, skip
30sec, batch 32

4, 549, 320 480 min 0.9553 0.9457

60sec input sequence, skip
30sec, batch 8

16, 609, 992 920 min 0.8984 0.9545

TABLE 6.2: Results table for all CNN models

6.3 Recurrent Neural Network

This section will outline the experiments and results using RNN’s in detail with the

methods discussed in section 3.4.3 and 5.3. The results can be found in table 6.3.

The RNN model consists of two stacked LSTM layer with 64 cells in the first and 128

cells in the second layer. The output of the LSTM layer is flattened and feed into two

dense layers with 1024 neurons each. This was done to increases the number of features

that are feed into dense layers.

• RNN normal: The basic RNN models seem to perform on par with a more com-

plex CNN model.

• 18sec input sequence, skip 30sec, batch 32: The assumption outlined in section

5.3 that longer input sequences should favor the RNN seems to hold as it im-

proves performance.

• 60sec input sequence, skip 30sec, batch 8: Using even longer input sequences

seem to improve performance even more. Also, the model does not overfit for the

train and validation data as it was the case using the CNN with the smaller batch

Chapter 6. Experiments and Results 47

size. A further interesting experiment would be to feed an entire song into the

RNN but, with the provided hardware, this could only be done using a batch size

of 1, therefore this experiment was not conducted.

Name Parameters
(trainable)

Training
time

Validation
Loss

Test
Loss

RNN normal 18, 571, 850 290 min 0.9853 0.9823
18sec input sequence, skip
30sec, batch 32

52, 126, 282 520 min 0.9764 0.9747

60sec input sequence, skip
30sec, batch 8

169, 566, 794 1120 min 0.9423 0.9487

TABLE 6.3: Results table for all RNN models

6.4 Pre-trained Neural Networks

This section gives an overview of the exact implementation of the models outlined in

section 5.4 as well as the achieved results which can be seen in table 6.4.

• Xception Network: This model is provided through the keras applications cata-

log therefore the can be loaded directly as a model object into keras. To get the

output only up to the desired block block11_sepconv3_bn can be done using the

code snippet below:

1 model_xception_load =
keras.applications.xception.Xception(include_top=False,
weights='imagenet', input_shape=(NO_MELS, 256, 3), pooling=None)

↪→

↪→

2 model_xception = keras.models.Model(inputs=model_xception_load.input,
outputs=model_xception_load.get_layer('block11_sepconv3_bn').output)↪→

The Kapre library, which is used for pre-processing the input for these models,

only supports sequential models in contrast to functional models. Therefore, the

final network architectures consist of three stacked sequential networks. The first

being a model solely for the pre-processing which includes the AmplitudeToDB

Chapter 6. Experiments and Results 48

and Filterbank layers as well as a convolutional operation with a (1, 1) filter and 3

kernels which were set to be non-trainable. This was done as the Xception model

requires 3 input channels (normally R, G, B). This was found to be faster than

concatenations. The second one being the Xception network up to the chosen

layer. The last one consists of two convolutional layers with the same design as

the one outlined in section 5.2.1 which are hoped to learn a high-level represen-

tation. They are followed by two dense layers with 1024 neurons each and an

output layer using 200 neurons. The models can then be stacked together:

1 keras.models.Model(inputs=model_mel.input,
outputs=[model_reg(model_xception(model_mel.output))])↪→

The layers from the imported Xception model can be set to trainable = False for the

first approach. The adaption (second approach) was done by setting the learning

rate of the adam optimizer to 1× 10−8.

• Choi music tagging model: The model and weights are provided in a Tensor-

Flow compatible file format (hdf5). However, the model was built using an older

version of Keras and an older version of Kapre which included an error in its nor-

malization algorithm. Therefore, the model was not imported but rebuild using

the current Keras version and only the parameters were imported and loaded into

the constructed model. The parameters include both the weights of the filters as

well as the associated bias. The model included weights for batch normalization

which were not used but replaced by a trainable batch normalization layer. The

max-pooling shapes were changed to compensate for the different input shape

used in this project. The adaption was performed using the same settings as the

one used in the Xception model.

The Xcpetion model without adaptation does not show good performance. This would

indicate that learned low- and mid-level features using images from the ImageNet

Chapter 6. Experiments and Results 49

Name Parameters
(trainable)

Training
time

Validation
Loss

Test
Loss

Xception normal 6, 082, 088 290 min 1.0996 1.0987
Xception adaptation 18, 486, 680 560 min 0.9954 0.9930
Choi normal 3, 775, 434 290 min 0.9774 0.9762
Choi adaptation 3, 812, 746 290 min 0.9695 0.9701
Choi long sequence 22, 687, 114 290 min 0.9498 0.9427

TABLE 6.4: Results table for all pre-trained models

dataset differ at lot from the target domain (Spectrograms) and are not easily trans-

ferable. Also, it should be noted that the learned weights for the included batch nor-

malization of the model should not make sense in the context of spectrograms and scale

the input in an insufficient way. However, there is not an easy way for removing them

and the learned weights of the filters depend on the scaled output. Using adaptation

i.e. allowing the model to be able to learn with a slow learning rate, slightly improves

performance. But this might be more due to a change of all trained weights as using

only the network architecture i.e. not included its pre-trained weights, yielded better

performance at a test loss of 0.9747. Because of the poor performance of this model the

experiment using the longer input sequences was not conducted.

The Choi model without adaption seems to perform on par with one of the more ad-

vanced CNN’s. However, if we allow the model to learn from our target domain, the

performance does not seem to improve. This might suggest that even though the model

was trained using mel-spectrogram as input i.e. identical to the input for this project,

a domain transfer seems not possible. However, using a longer input sequence which

mimics the input of the source domain even further, improves performance. Nonethe-

less, the main assumption that using pre-trained networks would outperform the CNN

or RNN models significantly without requiring longer training time, can be falsified.

This might indicate that musical feature extraction is very sensitive and therefore re-

quires detailed engineering of the input for both source and target models.

Chapter 6. Experiments and Results 50

6.5 Triplet Network

This section will present the implementation and results from the method in detail dis-

cussed in section 5.5.

As explained in the above-mentioned section, the offline sampling method for triplet

creation has been used. The triplets were created by computing the distance matrix for

each latent factor and the positive (sample) was randomly chosen out of 20 samples

with the closest distance and the negative (sample) out of the 500 samples with the

farthest distance. This was done to incorporate some randomness and variety into the

triplet creation. The average distance between the 20 closest and 500 farthest samples

is 0.3285, therefore, an α of 0.4 was chosen to create semi-hard negative triplets.

For feature extraction the basic CNN model explained in section 5.2.1 was used. The

dimension of the embedding space were set to 128. This might seem much lower than

the 4.000 of the BoT model but these ones are an embedding space for the entire dataset

whereas the 128 are per individual sample. However, the dimensions were chosen

somewhat arbitrary but [103] seem to achieve good results with it. The training of

this model was performed using 100% of the train-, test- and validation-data and two

epochs which took about 96 hours. This resulted in a validation loss of 0.6489 and a

test loss of 0.6854. This might indicate that the triple selection worked as intended as

the distance did not collapse to 0. The predicted embeddings were then used to train a

regression model to predict the latent factors. The settings of the regression model are

identical to the ones explained in section 5.1. The reduction of dimension in the input

data allowed in-memory processing with short training time per epoch. Therefore, the

regression model was trained for 50 epochs.

Chapter 6. Experiments and Results 51

Name Parameters
(trainable)

Training
time

Validation
Loss

Test
Loss

Triple loss embeddings 8, 408, 320 2315 min 0.6489 0.6854
Triple loss regression 2, 071, 240 120 min 0.7328 0.7459

TABLE 6.5: Results table for triplet model

6.6 Evaluations

6.6.1 Quantitative evaluation

This section will give an overview of the results for quantitative evaluation. A detailed

description of the method uses can be found in section 5.6.1. The overlap for different

models can be found in table 6.6 for similarity-based recommendations and in table 6.7

for the dot product between the latent vectors.

Analyzing the results one can see that the embeddings models e.g. Bag of Tones and

triple network seem to outperform the CNN and RNN models. One of the reasons

for this might be due to the two-stage learning process that the chosen embeddings

models incorporate. By splitting the feature extraction and regression phases into two

separate models, different hyperparameters can be selected for optimal training. In this

particular case, the dimensionality reduction through the embedding models allowed

much faster training for the regression model. The total percentages of overlap still

seem very low with only 7% for a top ten recommendation i.e. on average, less than

one song was predicted correctly.

6.6.2 Qualitative evaluation

This section will give an overview of results for qualitative evaluation and should re-

veal if the low scores from the quantitative evaluation translate to bad recommendations

or not.

Chapter 6. Experiments and Results 52

Name top 10 top 50 top 100 top 500

Bag of Tones 0.3784% 1.5497% 2.6008% 9.4746%
CNN normal 0.0192% 0.1529% 0.3241% 3.5417%
CNN more dense and more neu-
rons

0.0201% 0.1527% 0.3305% 3.5922%

CNN 18sec sequence, skip 30sec 0.9695% 0.3461% 0.6382% 2.8306%
RNN 18sec sequence, skip 30sec 0.2063% 0.4029% 1.0002% 4.0864%
Choi long sequence 0.9702% 0.3496% 0.6356% 2.9107%
Triplet 7.0035% 13.3401% 17.1463% 33.9973%

TABLE 6.6: Results table for quantitative evaluations based on similarity

Name top 10 top 50 top 100 top 500

Bag of Tones 1.2918% 4.8163% 7.4602% 16.3851%
CNN normal 0.0265% 0.3771% 0.8616% 4.3907%
CNN more dense and more neu-
rons

0.0268% 0.3274% 0.7691% 4.2088%

CNN 18sec sequence, skip 30sec 0.0285% 0.3159% 0.7646% 4.2257%
RNN 18sec sequence, skip 30sec 0.1023% 0.4192% 1.2307% 6.2639%
Choi long sequence 0.0279% 0.3208% 0.7594% 4.2853%
Triplet 48.5346% 53.8995% 55.2048% 52.8310%

TABLE 6.7: Results table for quantitative evaluations based on dot product

The Bag of Tones, CNN normal (with batch normalization) and Triplet models have

been chosen. The recommendations playlist can be found in appendix B. Figure B.1

displays an overview of the recommendations for the song Swan Lake by Tchaikovsky

and figure B.2 displays an overview of the recommendations for the song Klavier by

Rammstein.

The reader can also listen to the created playlist through the following links (please

note that availability of songs is subject to change and based on licensing):

• Swan Lake by Tchaikovsky

– True: Playlist

– CNN: Playlist

– BoT: Playlist

https://open.spotify.com/playlist/1vJQ6VQ21LRYUVt9Tjytmy?si=9HpUgRI4QCqcqYHypmXvIQ
https://open.spotify.com/playlist/0Yaslyl31HepSRWsuZDbHd?si=jYk8CXG0TvCAJ1zxslQz9g
https://open.spotify.com/playlist/2T9imCunczmm8eeP9yrYCJ?si=14XDasGRQna1uA6rznIEqw

Chapter 6. Experiments and Results 53

– Triplet: Playlist

• Klavier by Rammstein

– True: Playlist

– CNN: Playlist

– BoT: Playlist

– Triplet: Playlist

It is quite apparent that the recommendations provided by the CNN model for both

songs are not usable at all. However, it is notable that, even though they are far off

from the indented genre, they are relatively coherent i.e. all recommendations for the

first song seem to be German schlager whereas for the second it all seems to be elec-

tronic dance music. For the first song, the bag of tone models seem to be better than

the CNN but far from perfect. Only two out of the ten recommendations are somewhat

close to the original song with most of them drifting more into jazz or samba genre. The

triplet network performs best with all recommendations being close to the original. I

even prefer the recommendations of the triplet network over the true ones. The true

ones are deep into the classic genre with most of them slow, silent and not very rhyth-

mic. However, I would categorize the original window of the swan lake composition

as energetic with pronounced rhythm and bass. This is more reflected in the triplet rec-

ommendations. All true recommendations for the second song are from the same band

i.e. Rammstein. This might be one of the reasons why the result from the quantitative

analysis are so low. Here the recommendations from both the BoT and Triplet model

are acceptable. Both do not seem to be language-dependent as only one recommended

song is in German. I would say that the BoT recommendations are more on the soft side

of Rock and may even be influenced by Hip-Hop whereas the Triplet recommendations

are more hard Rock with some leaning towards Heavy Metal.

https://open.spotify.com/playlist/2tW7skI8LNZ28MqgekZXYA?si=zO2tIl8GQ4-9426kEgEPrg
https://open.spotify.com/playlist/6kyL1UAxFRsis9iKTRsb5A?si=CfVWJysqRN2SZMtY0wvdsQ
https://open.spotify.com/playlist/7FLW28B8xcIj3v2rSYvDw5?si=NtD1OvJnSryFrmDvc6tKuw
https://open.spotify.com/playlist/7gwBFBqYkf0u5uDSd5F31n?si=puB3YsErSJ6SfAPlWoxSLw
https://open.spotify.com/playlist/3EjSJWj5ljHUwbdNFt6yf8?si=YdnMg4XySjSAvWHBFqQH8w

54

Chapter 7

Conclusions and future work

This research project aimed to identify possible machine learning techniques that are

able to overcome the cold start problem from collaborative-based music recommenda-

tion. This was done by using the audio content as the source of the recommendation

and the learned latent factors from a collaborative-based model as its target to achieve

more coherent and accurate recommendations.

Both quantitative and qualitative evaluation have shown that this might indeed be

possible. It has long been a challenge for content-based recommendations to capture

enough information to make recommendations that reflect one user’s preferences and

affects towards music. Using the latent factors from a collaborative-model as the target

for training seems to help mitigate this problem. Among all the models I have tested,

experiments suggests that the Triplet-network provides the most fitting recommenda-

tions. Qualitative evaluation has shown that the recommendations are able to capture

more nuance than recommendations just based on genre or another category would.

However, this is not to say that all user preferences were captured. Therefore, this ap-

proach might be the first step to bridge the semantic gap outlined by [53].

The project has also shown that analyzing the quality of recommendations purely based

on quantitative analysis is not suitable. An overlap of around 1% or 7% might not

sound promising but qualitative evaluation has shown that even 7% overlap recom-

mendations are promising. This, however, should undergo further investigation as this

Chapter 7. Conclusions and future work 55

statement relays solely on my own assumption and analysis of the recommendations.

Conducting interviews with experts in the field of musicology could provide more in-

sight into the recommendations and identify possible issues. A/B testing the resulting

using a broader audience would also help to highlight potential disadvantages. Further

research into this area could yield a way of comparable qualitative evaluations which

would make comparisons between recommendation methods and achieved improve-

ments much more usable.

Followup work could also investigate the potential of a hybrid recommendation ap-

proach between the resulting content-based recommendations of this project and pure

collaborative-based ones. Similar to the approach by [31] the results from this work

could aid a CF model to make final recommendations.

Using a large variety of possible machine learning techniques has also shown that to

build a reasonable performing model a two-stage approach seems to work much bet-

ter than the more favored end-to-end approach. Historically it has been shown that

two-stage approaches like bag of words for natural language processing or SIFT fea-

ture extraction and classification using SVM or another classifier are outperformed sig-

nificantly by end-to-end approaches like a CNN or RNN [81], [98]. This might still

be true for the task at hand but from a computer engineering standpoint, it has been

shown that this is not feasible. Learning musical-embeddings and feeding them into a

second regression model which will require only a small portion of the computational

resources outperforms end-to-end approaches in training time and result given the con-

strained of the provided hardware. However, using an end-to-end approach to create

the embeddings as proposed by [113] could yield more suitable embeddings than a

Triplet-network.

Further to the above, thorough source selection i.e. which patches of a song are taken

into account, has to be chosen carefully as it impacts performance. Here more advanced

selection methods which are magnitude- or entropy-based could yield further improve-

ments. It has also been shown that domain transfer learning for music recommendation

Chapter 7. Conclusions and future work 56

will require further research as out of the box approaches using pre-trained networks

do not work.

Summing up, this research project has shown that the cold start problem can be circum-

vented using novel machine learning techniques like Triplet-networks and using latent

factors as prediction targets narrows the semantic gap which will yield recommenda-

tions that are more suitable to a user’s preferences.

57

Appendix A

CNN visualisation of filter weights

(A) Layer 1 (B) Layer 2

(C) Layer 3

FIGURE A.1: Visualisation of filter weights

58

Appendix B

Spotify recommendations

This is an overview of recommendations from the three different models and for the

two different selected songs. The playlist True indicates the recommendations using

the provided latent factors by UMG.

Appendix B. Spotify recommendations 59

(A) True

(B) CNN

(C) BoT

FIGURE B.1: Playlist recommendation for Swan Lake by Tchaikovsky

Appendix B. Spotify recommendations 60

(D) Triplet

FIGURE B.1: Playlist recommendation for Swan Lake by Tchaikovsky

(A) True

(B) CNN

FIGURE B.2: Playlist recommendation for Klavier by Rammstein

Appendix B. Spotify recommendations 61

(C) BoT

(D) Triplet

FIGURE B.2: Playlist recommendation for Klavier by Rammstein

62

Bibliography

[1] SS Stevens, J Volkmann, and EB Newman, “A scale for the measurement of the

psychological magnitude pitch”, The Journal of the Acoustical Society of America,

vol. 8, no. 3, pp. 185–190, 1937.

[2] SS Stevens, “The measurement of loudness”, The Journal of the Acoustical Society

of America, vol. 27, no. 5, pp. 815–829, 1955.

[3] AV Oppenheim, “Speech spectrograms using the fast fourier transform”, IEEE

spectrum, vol. 7, no. 8, pp. 57–62, 1970.

[4] GH Golub and C Reinsch, “Singular value decomposition and least squares so-

lutions”, in Linear Algebra, Springer, 1971, pp. 134–151.

[5] N Ahmed, T Natarajan, and KR Rao, “Discrete cosine transform”, IEEE transac-

tions on Computers, vol. 100, no. 1, pp. 90–93, 1974.

[6] P Mermelstein, “Distance measures for speech recognition, psychological and

instrumental”, Pattern recognition and artificial intelligence, vol. 116, pp. 374–388,

1976.

[7] FJ Harris, “On the use of windows for harmonic analysis with the discrete fourier

transform”, Proceedings of the IEEE, vol. 66, no. 1, pp. 51–83, 1978.

[8] RA Altes, “Detection, estimation, and classification with spectrograms”, The Jour-

nal of the Acoustical Society of America, vol. 67, no. 4, pp. 1232–1246, 1980.

[9] K Fukushima, “Neocognitron: A self-organizing neural network model for a

mechanism of pattern recognition unaffected by shift in position”, Biological cy-

bernetics, vol. 36, no. 4, pp. 193–202, 1980.

BIBLIOGRAPHY 63

[10] RN Bracewell and RN Bracewell, The fourier transform and its applications. McGraw-

Hill New York, 1986, vol. 31999.

[11] S Wold, K Esbensen, and P Geladi, “Principal component analysis”, Chemomet-

rics and intelligent laboratory systems, vol. 2, no. 1-3, pp. 37–52, 1987.

[12] I Lawrence and K Lin, “A concordance correlation coefficient to evaluate repro-

ducibility”, Biometrics, pp. 255–268, 1989.

[13] RE Thayer, The biopsychology of mood and arousal. Oxford University Press, 1990.

[14] PM Herr, FR Kardes, and J Kim, “Effects of word-of-mouth and product-attribute

information on persuasion: An accessibility-diagnosticity perspective”, Journal

of consumer research, vol. 17, no. 4, pp. 454–462, 1991.

[15] D Goldberg, D Nichols, BM Oki, et al., “Using collaborative filtering to weave

an information tapestry”, Communications of the ACM, vol. 35, no. 12, pp. 61–71,

1992.

[16] S Carroll and M Swain, “Explicit and implicit negative feedback: An empirical

study of the learning of linguistic generalizations”, Studies in second language

acquisition, vol. 15, no. 3, pp. 357–386, 1993.

[17] CM Bishop et al., Neural networks for pattern recognition. Oxford university press,

1995.

[18] E Wold, T Blum, D Keislar, et al., “Content-based classification, search, and re-

trieval of audio”, IEEE multimedia, vol. 3, no. 3, pp. 27–36, 1996.

[19] J Foote, “A similarity measure for automatic audio classification”, in Proc. AAAI

1997 Spring Symposium on Intelligent Integration and Use of Text, Image, Video, and

Audio Corpora, 1997.

[20] JT Foote, “Content-based retrieval of music and audio”, in Multimedia Storage

and Archiving Systems II, International Society for Optics and Photonics, vol. 3229,

1997, pp. 138–147.

[21] S Hochreiter and J Schmidhuber, “Long short-term memory”, Neural computa-

tion, vol. 9, no. 8, pp. 1735–1780, 1997.

BIBLIOGRAPHY 64

[22] M Claypool, A Gokhale, T Miranda, et al., “Combing content-based and collab-

orative filters in an online newspaper”, 1999.

[23] JB Schafer, J Konstan, and J Riedl, “Recommender systems in e-commerce”, in

Proceedings of the 1st ACM conference on Electronic commerce, ACM, 1999, pp. 158–

166.

[24] M Welsh, N Borishov, J Hill, et al., “Querying large collections of music for simi-

larity”, Technical report, University of California, Berkeley, CA, Tech. Rep., 1999.

[25] B Logan et al., “Mel frequency cepstral coefficients for music modeling.”, in IS-

MIR, vol. 270, 2000, pp. 1–11.

[26] DD Lee and HS Seung, “Algorithms for non-negative matrix factorization”, in

Advances in neural information processing systems, 2001, pp. 556–562.

[27] B Logan and A Salomon, “A music similarity function based on signal analy-

sis.”, in ICME, 2001, pp. 22–25.

[28] BM Sarwar, G Karypis, JA Konstan, et al., “Item-based collaborative filtering

recommendation algorithms.”, Www, vol. 1, pp. 285–295, 2001.

[29] J-J Aucouturier, F Pachet, et al., “Music similarity measures: What’s the use?”, in

ISMIR, 2002, pp. 13–17.

[30] R Burke, “Hybrid recommender systems: Survey and experiments”, User model-

ing and user-adapted interaction, vol. 12, no. 4, pp. 331–370, 2002.

[31] P Melville, RJ Mooney, and R Nagarajan, “Content-boosted collaborative filter-

ing for improved recommendations”, Aaai/iaai, vol. 23, pp. 187–192, 2002.

[32] K Hoashi, K Matsumoto, and N Inoue, “Personalization of user profiles for

content-based music retrieval based on relevance feedback”, in Proceedings of

the eleventh ACM international conference on Multimedia, ACM, 2003, pp. 110–119.

[33] G Linden, B Smith, and J York, “Amazon. com recommendations: Item-to-item

collaborative filtering”, IEEE Internet computing, no. 1, pp. 76–80, 2003.

[34] F Pease, T Pease, and R Mattingly, Jazz composition: Theory and practice. Berklee

Pr Pubns, 2003.

BIBLIOGRAPHY 65

[35] C Xu, NC Maddage, X Shao, et al., “Musical genre classification using support

vector machines”, in 2003 IEEE International Conference on Acoustics, Speech, and

Signal Processing, 2003. Proceedings.(ICASSP’03)., IEEE, vol. 5, 2003, pp. V–429.

[36] DH Hubel and TN Wiesel, Brain and visual perception: The story of a 25-year collab-

oration. Oxford University Press, 2004.

[37] T Li and M Ogihara, “Content-based music similarity search and emotion de-

tection”, in 2004 IEEE International Conference on Acoustics, Speech, and Signal Pro-

cessing, IEEE, vol. 5, 2004, pp. V–705.

[38] B Logan, “Music recommendation from song sets.”, in ISMIR, 2004, pp. 425–428.

[39] F Pachet and J-J Aucouturier, “Improving timbre similarity: How high is the

sky”, Journal of negative results in speech and audio sciences, vol. 1, no. 1, pp. 1–13,

2004.

[40] P Cano, M Koppenberger, and N Wack, “Content based music audio recommen-

dation”, in Proceedings of the 13th annual ACM international conference on Multime-

dia, ACM, 2005, pp. 211–212.

[41] H-C Chen and AL Chen, “A music recommendation system based on music and

user grouping”, Journal of Intelligent Information Systems, vol. 24, no. 2-3, pp. 113–

132, 2005.

[42] S Chopra, R Hadsell, Y LeCun, et al., “Learning a similarity metric discrimina-

tively, with application to face verification”, in CVPR (1), 2005, pp. 539–546.

[43] MI Mandel and DP Ellis, “Song-level features and support vector machines for

music classification”, 2005.

[44] E Pampalk, A Flexer, G Widmer, et al., “Improvements of audio-based music

similarity and genre classificaton.”, in ISMIR, London, UK, vol. 5, 2005, pp. 634–

637.

[45] R Stenzel and T Kamps, “Improving content-based similarity measures by train-

ing a collaborative model.”, in ISMIR, Citeseer, 2005, pp. 264–271.

BIBLIOGRAPHY 66

[46] F Vignoli and S Pauws, “A music retrieval system based on user driven similar-

ity and its evaluation.”, in ISMIR, Citeseer, 2005, pp. 272–279.

[47] E Gómez, “Tonal description of polyphonic audio for music content process-

ing”, INFORMS Journal on Computing, vol. 18, no. 3, pp. 294–304, 2006.

[48] K Yoshii, M Goto, K Komatani, et al., “Hybrid collaborative and content-based

music recommendation using probabilistic model with latent user preferences.”,

in ISMIR, vol. 6, 2006, 7th.

[49] J Bennett, S Lanning, et al., “The netflix prize”, in Proceedings of KDD cup and

workshop, New York, NY, USA., vol. 2007, 2007, p. 35.

[50] J Donaldson, “A hybrid social-acoustic recommendation system for popular

music”, in Proceedings of the 2007 ACM conference on Recommender systems, ACM,

2007, pp. 187–190.

[51] DP Ellis, “Classifying music audio with timbral and chroma features”, 2007.

[52] D Jennings, Net, blogs and rock’n’roll: How digital discovery works and what it means

for consumers, creators and culture. Nicholas Brealey Publishing, 2007.

[53] Ò Celma, “Music recommendation and discovery in the long tail”, PhD thesis,

Universitat Pompeu Fabra, Barcelona, 2008.

[54] Y Hu, Y Koren, and C Volinsky, “Collaborative filtering for implicit feedback

datasets”, in 2008 Eighth IEEE International Conference on Data Mining, Ieee, 2008,

pp. 263–272.

[55] M Slaney, K Weinberger, and W White, “Learning a metric for music similarity”,

in International Symposium on Music Information Retrieval (ISMIR), 2008.

[56] Z Chedrawy and SSR Abidi, “A web recommender system for recommending,

predicting and personalizing music playlists”, in International Conference on Web

Information Systems Engineering, Springer, 2009, pp. 335–342.

[57] Y Koren, “The bellkor solution to the netflix grand prize”, Netflix prize documen-

tation, vol. 81, no. 2009, pp. 1–10, 2009.

BIBLIOGRAPHY 67

[58] Y Koren, R Bell, and C Volinsky, “Matrix factorization techniques for recom-

mender systems”, Computer, no. 8, pp. 30–37, 2009.

[59] C-C Lu and VS Tseng, “A novel method for personalized music recommenda-

tion”, Expert Systems with Applications, vol. 36, no. 6, pp. 10 035–10 044, 2009.

[60] F Maillet, D Eck, G Desjardins, et al., “Steerable playlist generation by learning

song similarity from radio station playlists.”, in ISMIR, 2009, pp. 345–350.

[61] B McFee and GR Lanckriet, “Heterogeneous embedding for subjective artist

similarity.”, in ISMIR, 2009, pp. 513–518.

[62] X Su and TM Khoshgoftaar, “A survey of collaborative filtering techniques”,

Advances in artificial intelligence, vol. 2009, 2009.

[63] J Bu, S Tan, C Chen, et al., “Music recommendation by unified hypergraph: Com-

bining social media information and music content”, in Proceedings of the 18th

ACM international conference on Multimedia, ACM, 2010, pp. 391–400.

[64] J Davidson, B Liebald, J Liu, et al., “The youtube video recommendation sys-

tem”, in Proceedings of the fourth ACM conference on Recommender systems, ACM,

2010, pp. 293–296.

[65] M Ge, C Delgado-Battenfeld, and D Jannach, “Beyond accuracy: Evaluating rec-

ommender systems by coverage and serendipity”, in Proceedings of the fourth

ACM conference on Recommender systems, ACM, 2010, pp. 257–260.

[66] P Hamel and D Eck, “Learning features from music audio with deep belief net-

works.”, in ISMIR, Utrecht, The Netherlands, vol. 10, 2010, pp. 339–344.

[67] G Jawaheer, M Szomszor, and P Kostkova, “Comparison of implicit and explicit

feedback from an online music recommendation service”, in Proceedings of the

1st international workshop on information heterogeneity and fusion in recommender

systems, ACM, 2010, pp. 47–51.

[68] M Nakatsuji, Y Fujiwara, A Tanaka, et al., “Classical music for rock fans?: Novel

recommendations for expanding user interests”, in Proceedings of the 19th ACM

BIBLIOGRAPHY 68

international conference on Information and knowledge management, ACM, 2010, pp. 949–

958.

[69] D Sculley, “Web-scale k-means clustering”, in Proceedings of the 19th international

conference on World wide web, ACM, 2010, pp. 1177–1178.

[70] Y Zhang, R Jin, and Z-H Zhou, “Understanding bag-of-words model: A statisti-

cal framework”, International Journal of Machine Learning and Cybernetics, vol. 1,

no. 1-4, pp. 43–52, 2010.

[71] R Burke, A Felfernig, and MH Göker, “Recommender systems: An overview”,

Ai Magazine, vol. 32, no. 3, pp. 13–18, 2011.

[72] F Cacheda, V Carneiro, D Fernández, et al., “Comparison of collaborative fil-

tering algorithms: Limitations of current techniques and proposals for scalable,

high-performance recommender systems”, ACM Transactions on the Web (TWEB),

vol. 5, no. 1, p. 2, 2011.

[73] M Henaff, K Jarrett, K Kavukcuoglu, et al., “Unsupervised learning of sparse

features for scalable audio classification.”, in ISMIR, vol. 11, 2011, p. 2011.

[74] M Muller, DP Ellis, A Klapuri, et al., “Signal processing for music analysis”, IEEE

Journal of Selected Topics in Signal Processing, vol. 5, no. 6, pp. 1088–1110, 2011.

[75] F Pedregosa, G Varoquaux, A Gramfort, et al., “Scikit-learn: Machine learning in

Python”, Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[76] F Ricci, L Rokach, and B Shapira, “Introduction to recommender systems hand-

book”, in Recommender systems handbook, Springer, 2011, pp. 1–35.

[77] J Schluter and C Osendorfer, “Music similarity estimation with the mean-covariance

restricted boltzmann machine”, in 2011 10th International Conference on Machine

Learning and Applications and Workshops, IEEE, vol. 2, 2011, pp. 118–123.

[78] EM Schmidt and YE Kim, “Learning emotion-based acoustic features with deep

belief networks”, in 2011 IEEE workshop on applications of signal processing to audio

and acoustics (Waspaa), IEEE, 2011, pp. 65–68.

BIBLIOGRAPHY 69

[79] M Slaney, “Web-scale multimedia analysis: Does content matter?”, IEEE Multi-

Media, vol. 18, no. 2, pp. 12–15, 2011.

[80] EJ Humphrey and JP Bello, “Rethinking automatic chord recognition with con-

volutional neural networks”, in 2012 11th International Conference on Machine

Learning and Applications, IEEE, vol. 2, 2012, pp. 357–362.

[81] A Krizhevsky, I Sutskever, and GE Hinton, “Imagenet classification with deep

convolutional neural networks”, in Advances in neural information processing sys-

tems, 2012, pp. 1097–1105.

[82] B McFee, L Barrington, and G Lanckriet, “Learning content similarity for music

recommendation”, IEEE transactions on audio, speech, and language processing, vol.

20, no. 8, pp. 2207–2218, 2012.

[83] Y Song, S Dixon, and M Pearce, “A survey of music recommendation systems

and future perspectives”, in 9th International Symposium on Computer Music Mod-

eling and Retrieval, vol. 4, 2012.

[84] D Bogdanov, M Haro, F Fuhrmann, et al., “Semantic audio content-based music

recommendation and visualization based on user preference examples”, Infor-

mation Processing & Management, vol. 49, no. 1, pp. 13–33, 2013.

[85] A Van den Oord, S Dieleman, and B Schrauwen, “Deep content-based music rec-

ommendation”, in Advances in neural information processing systems, 2013, pp. 2643–

2651.

[86] M Patil, A Gupta, A Varma, et al., “Audio and speech compression using dct and

dwt techniques”, International Journal of Innovative Research in Science, Engineering

and Technology, vol. 2, no. 5, pp. 1712–1719, 2013.

[87] Z Qin, W Liu, and T Wan, “A bag-of-tones model with mfcc features for musi-

cal genre classification”, in International Conference on Advanced Data Mining and

Applications, Springer, 2013, pp. 564–575.

BIBLIOGRAPHY 70

[88] S Dieleman and B Schrauwen, “End-to-end learning for music audio”, in 2014

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),

IEEE, 2014, pp. 6964–6968.

[89] DP Kingma and J Ba, “Adam: A method for stochastic optimization”, ArXiv

preprint arXiv:1412.6980, 2014.

[90] B Lika, K Kolomvatsos, and S Hadjiefthymiades, “Facing the cold start prob-

lem in recommender systems”, Expert Systems with Applications, vol. 41, no. 4,

pp. 2065–2073, 2014.

[91] M Oquab, L Bottou, I Laptev, et al., “Learning and transferring mid-level image

representations using convolutional neural networks”, in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2014, pp. 1717–1724.

[92] JT Springenberg, A Dosovitskiy, T Brox, et al., “Striving for simplicity: The all

convolutional net”, ArXiv preprint arXiv:1412.6806, 2014.

[93] N Srivastava, G Hinton, A Krizhevsky, et al., “Dropout: A simple way to prevent

neural networks from overfitting”, The journal of machine learning research, vol. 15,

no. 1, pp. 1929–1958, 2014.

[94] A Van Den Oord, S Dieleman, and B Schrauwen, “Transfer learning by super-

vised pre-training for audio-based music classification”, in Conference of the In-

ternational Society for Music Information Retrieval (ISMIR 2014), 2014.

[95] F Chollet et al., Keras, https://keras.io, 2015.

[96] D-A Clevert, T Unterthiner, and S Hochreiter, “Fast and accurate deep network

learning by exponential linear units (elus)”, ArXiv preprint arXiv:1511.07289, 2015.

[97] K He, X Zhang, S Ren, et al., “Delving deep into rectifiers: Surpassing human-

level performance on imagenet classification”, in Proceedings of the IEEE interna-

tional conference on computer vision, 2015, pp. 1026–1034.

[98] ZC Lipton, J Berkowitz, and C Elkan, “A critical review of recurrent neural net-

works for sequence learning”, ArXiv preprint arXiv:1506.00019, 2015.

https://keras.io

BIBLIOGRAPHY 71

[99] B McFee, C Raffel, D Liang, et al., “Librosa: Audio and music signal analysis in

python”, in Proceedings of the 14th python in science conference, vol. 8, 2015.

[100] T Park and T Lee, “Music-noise segmentation in spectrotemporal domain using

convolutional neural networks”, in 16th International Society for Music Information

Retrieval Conference (ISMIR), 2015.

[101] M Schedl and D Hauger, “Tailoring music recommendations to users by con-

sidering diversity, mainstreaminess, and novelty”, in Proceedings of the 38th in-

ternational acm sigir conference on research and development in information retrieval,

ACM, 2015, pp. 947–950.

[102] M Schedl, P Knees, B McFee, et al., “Music recommender systems”, in Recom-

mender systems handbook, Springer, 2015, pp. 453–492.

[103] F Schroff, D Kalenichenko, and J Philbin, “Facenet: A unified embedding for

face recognition and clustering”, in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2015, pp. 815–823.

[104] TO ’Brien, “A recurrent neural network for musical structure processing and

expectation”, 2016.

[105] K Choi, G Fazekas, and M Sandler, “Explaining deep convolutional neural net-

works on music classification”, ArXiv preprint arXiv:1607.02444, 2016.

[106] J Pons Puig, T Lidy, and X Serra, “Experimenting with musically motivated

convolutional neural networks”, in 14th International Workshop on Content-Based

Multimedia Indexing (CBMI); 2016 June 15-17; Bucharest, Romania.[Unknown place]:

IEEE, 2016. p. 1-6., Institute of Electrical and Electronics Engineers (IEEE), 2016.

[107] D Sánchez-Moreno, ABG González, MDM Vicente, et al., “A collaborative filter-

ing method for music recommendation using playing coefficients for artists and

users”, Expert Systems with Applications, vol. 66, pp. 234–244, 2016.

[108] K Choi, G Fazekas, M Sandler, et al., “Transfer learning for music classification

and regression tasks”, ArXiv preprint arXiv:1703.09179, 2017.

BIBLIOGRAPHY 72

[109] K Choi, D Joo, and J Kim, “Kapre: On-gpu audio preprocessing layers for a quick

implementation of deep neural network models with keras”, in Machine Learning

for Music Discovery Workshop at 34th International Conference on Machine Learning,

ICML, 2017.

[110] F Chollet, “Xception: Deep learning with depthwise separable convolutions”, in

Proceedings of the IEEE conference on computer vision and pattern recognition, 2017,

pp. 1251–1258.

[111] DT Tough, “An analysis of common songwriting and production practices in

2014-2015 billboard hot 100 songs”, MEIEA Journal, vol. 17, no. 1, p. 79, 2017.

[112] A Ycart, E Benetos, et al., “A study on lstm networks for polyphonic music se-

quence modelling”, ISMIR, 2017.

[113] J Lee, K Lee, J Park, et al., “Deep content-user embedding model for music rec-

ommendation”, ArXiv preprint arXiv:1807.06786, 2018.

[114] SJ Reddi, S Kale, and S Kumar, “On the convergence of adam and beyond”,

ArXiv preprint arXiv:1904.09237, 2019.

[115] A detailed example of data generators with keras, https://stanford.edu/~shervine/

blog/keras-how-to-generate-data-on-the-fly, (Accessed on 07/29/2019).

[116] Form 6-k spotify technology s.a. https://s22.q4cdn.com/540910603/files/doc_

financials/quarterly/2019/Financial-Statements-Q1-2019.pdf, (Accessed

on 07/22/2019).

[117] Google cloud platform pricing calculator, https://cloud.google.com/products/

calculator, (Accessed on 07/29/2019).

[118] Harisiqbal88/plotneuralnet: Latex code for making neural networks diagrams, https:

//github.com/HarisIqbal88/PlotNeuralNet, (Accessed on 07/30/2019).

[119] How to use data scaling improve deep learning model stability and performance, https:

//machinelearningmastery.com/how-to-improve-neural-network-stability-

and-modeling-performance-with-data-scaling/, (Accessed on 07/28/2019).

https://stanford.edu/~shervine/blog/keras-how-to-generate-data-on-the-fly
https://stanford.edu/~shervine/blog/keras-how-to-generate-data-on-the-fly
https://s22.q4cdn.com/540910603/files/doc_financials/quarterly/2019/Financial-Statements-Q1-2019.pdf
https://s22.q4cdn.com/540910603/files/doc_financials/quarterly/2019/Financial-Statements-Q1-2019.pdf
https://cloud.google.com/products/calculator
https://cloud.google.com/products/calculator
https://github.com/HarisIqbal88/PlotNeuralNet
https://github.com/HarisIqbal88/PlotNeuralNet
https://machinelearningmastery.com/how-to-improve-neural-network-stability-and-modeling-performance-with-data-scaling/
https://machinelearningmastery.com/how-to-improve-neural-network-stability-and-modeling-performance-with-data-scaling/
https://machinelearningmastery.com/how-to-improve-neural-network-stability-and-modeling-performance-with-data-scaling/

BIBLIOGRAPHY 73

[120] In ar, gut vs. data isn’t a binary choice, https://www.musicbusinessworldwide.

com/in- ar- gut- vs- data- isnt- actually- a- binary- choice/, (Accessed

07/12/2019).

[121] Music copyright: A quick guide | practical law, https://uk.practicallaw.thomsonreuters.

com / 3 - 532 - 4069 ? transitionType = Default & contextData = (sc . Default)

&firstPage=true, (Accessed on 07/29/2019).

[122] Music copyright uk | how to copyright a song & uk copyright law, https://www.

openmicuk.co.uk/advice/music-copyright-uk/, (Accessed on 07/29/2019).

[123] Nearly 40,000 tracks are now being added to spotify every single day, https://www.

musicbusinessworldwide.com/nearly-40000-tracks-are-now-being-added-

to-spotify-every-single-day/, (Accessed 07/12/2019).

[124] Practical cryptography, http://practicalcryptography.com/miscellaneous/

machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/,

(Accessed on 08/10/2019).

[125] Triplet loss and online triplet mining in tensorflow | olivier moindrot blog, https:

//omoindrot.github.io/triplet-loss, (Accessed on 08/14/2019).

[126] Understanding lstm networks – colah’s blog, https://colah.github.io/posts/

2015-08-Understanding-LSTMs/, (Accessed on 08/13/2019).

[127] Welcome to spotipy! — spotipy 2.0 documentation, https://spotipy.readthedocs.

io/en/latest/features, (Accessed on 08/19/2019).

https://www.musicbusinessworldwide.com/in-ar-gut-vs-data-isnt-actually-a-binary-choice/
https://www.musicbusinessworldwide.com/in-ar-gut-vs-data-isnt-actually-a-binary-choice/
https://uk.practicallaw.thomsonreuters.com/3-532-4069?transitionType=Default&contextData=(sc.Default)&firstPage=true
https://uk.practicallaw.thomsonreuters.com/3-532-4069?transitionType=Default&contextData=(sc.Default)&firstPage=true
https://uk.practicallaw.thomsonreuters.com/3-532-4069?transitionType=Default&contextData=(sc.Default)&firstPage=true
https://www.openmicuk.co.uk/advice/music-copyright-uk/
https://www.openmicuk.co.uk/advice/music-copyright-uk/
https://www.musicbusinessworldwide.com/nearly-40000-tracks-are-now-being-added-to-spotify-every-single-day/
https://www.musicbusinessworldwide.com/nearly-40000-tracks-are-now-being-added-to-spotify-every-single-day/
https://www.musicbusinessworldwide.com/nearly-40000-tracks-are-now-being-added-to-spotify-every-single-day/
http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/
http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/
https://omoindrot.github.io/triplet-loss
https://omoindrot.github.io/triplet-loss
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://spotipy.readthedocs.io/en/latest/features
https://spotipy.readthedocs.io/en/latest/features

	Abstract
	Acknowledgements
	Introduction
	Context and structure
	Personal motivation

	Related Work
	Introduction
	Audio feature extraction
	Music recommendation

	Background
	Introduction
	Recommendation methods
	Collaborative filtering
	Memory-based Collaborative filtering
	Model-based Collaborative filtering

	Content-based filtering
	Hybrid approaches

	Audio features
	Spectrograms
	Mel Frequency Cepstral Coefficient

	Machine Learning Methods
	Bag of Tones
	Convolutional Neural Networks
	Recurrent Neural Networks

	Dataset and Hardware Setup
	Dataset
	Preprocessing
	Hardware requirements and its difficulties

	Methodology
	Bag of Tones model
	Convolutional Neural Networks
	Basic Convnet
	Convnet architecture adjustments

	Recurrent Neural Network
	Pre-trained Neural Networks
	Triplet Neural Network
	Evaluations
	Quantitative evaluation
	Qualitative evaluation

	Experiments and Results
	Bag of Tones
	Convolutional Neural Network
	Recurrent Neural Network
	Pre-trained Neural Networks
	Triplet Network
	Evaluations
	Quantitative evaluation
	Qualitative evaluation

	Conclusions and future work
	CNN visualisation of filter weights
	Spotify recommendations

